Properties

Label 3724.2.w
Level $3724$
Weight $2$
Character orbit 3724.w
Rep. character $\chi_{3724}(2775,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $720$
Sturm bound $1120$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3724.w (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1120\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3724, [\chi])\).

Total New Old
Modular forms 1152 720 432
Cusp forms 1088 720 368
Eisenstein series 64 0 64

Trace form

\( 720 q - 4 q^{2} + 4 q^{4} + 8 q^{8} - 360 q^{9} + 30 q^{12} + 28 q^{16} - 10 q^{18} - 8 q^{22} - 36 q^{24} + 368 q^{25} + 80 q^{29} - 56 q^{30} + 46 q^{32} + 24 q^{33} + 40 q^{36} - 32 q^{37} + 60 q^{40}+ \cdots - 144 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3724, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3724, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3724, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 2}\)