Properties

Label 3724.2.cz
Level $3724$
Weight $2$
Character orbit 3724.cz
Rep. character $\chi_{3724}(297,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $1128$
Sturm bound $1120$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3724.cz (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 931 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(1120\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3724, [\chi])\).

Total New Old
Modular forms 6792 1128 5664
Cusp forms 6648 1128 5520
Eisenstein series 144 0 144

Trace form

\( 1128 q - 3 q^{5} - 2 q^{7} - 192 q^{9} - 10 q^{11} + 6 q^{13} + 9 q^{15} - 14 q^{17} - 3 q^{19} + 9 q^{21} + 4 q^{23} - 97 q^{25} + 6 q^{29} - 9 q^{31} + q^{35} - 51 q^{37} - 18 q^{39} + 6 q^{41} + 2 q^{43}+ \cdots - 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3724, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3724, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3724, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(931, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1862, [\chi])\)\(^{\oplus 2}\)