Properties

Label 3712.2.m
Level $3712$
Weight $2$
Character orbit 3712.m
Rep. character $\chi_{3712}(289,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $232$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3712 = 2^{7} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3712.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 464 \)
Character field: \(\Q(i)\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3712, [\chi])\).

Total New Old
Modular forms 992 248 744
Cusp forms 928 232 696
Eisenstein series 64 16 48

Trace form

\( 232 q + 8 q^{5} + 8 q^{13} + 20 q^{29} - 16 q^{33} - 56 q^{45} - 200 q^{49} + 40 q^{53} - 48 q^{65} - 184 q^{81} + 80 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3712, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3712, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3712, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(464, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1856, [\chi])\)\(^{\oplus 2}\)