# Properties

 Label 370.2.q.d.103.3 Level $370$ Weight $2$ Character 370.103 Analytic conductor $2.954$ Analytic rank $0$ Dimension $12$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$370 = 2 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 370.q (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.95446487479$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$3$$ over $$\Q(\zeta_{12})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ Defining polynomial: $$x^{12} - 2x^{11} - 4x^{10} + 6x^{8} + 44x^{7} + 56x^{6} + 32x^{5} + 92x^{4} - 16x^{3} + 36x^{2} - 24x + 4$$ x^12 - 2*x^11 - 4*x^10 + 6*x^8 + 44*x^7 + 56*x^6 + 32*x^5 + 92*x^4 - 16*x^3 + 36*x^2 - 24*x + 4 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 103.3 Root $$-1.69087 + 0.453068i$$ of defining polynomial Character $$\chi$$ $$=$$ 370.103 Dual form 370.2.q.d.97.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 - 0.866025i) q^{2} +(0.608236 + 2.26997i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.642592 + 2.14175i) q^{5} +(1.66173 - 1.66173i) q^{6} +(0.265598 + 0.991227i) q^{7} +1.00000 q^{8} +(-2.18472 + 1.26135i) q^{9} +O(q^{10})$$ $$q+(-0.500000 - 0.866025i) q^{2} +(0.608236 + 2.26997i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.642592 + 2.14175i) q^{5} +(1.66173 - 1.66173i) q^{6} +(0.265598 + 0.991227i) q^{7} +1.00000 q^{8} +(-2.18472 + 1.26135i) q^{9} +(1.53351 - 1.62737i) q^{10} -1.09386i q^{11} +(-2.26997 - 0.608236i) q^{12} +(-0.227440 + 0.393937i) q^{13} +(0.725629 - 0.725629i) q^{14} +(-4.47084 + 2.76135i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.50536 + 1.44647i) q^{17} +(2.18472 + 1.26135i) q^{18} +(-0.134218 + 0.0359636i) q^{19} +(-2.17610 - 0.514372i) q^{20} +(-2.08851 + 1.20580i) q^{21} +(-0.947314 + 0.546932i) q^{22} -0.390557 q^{23} +(0.608236 + 2.26997i) q^{24} +(-4.17415 + 2.75254i) q^{25} +0.454879 q^{26} +(0.793148 + 0.793148i) q^{27} +(-0.991227 - 0.265598i) q^{28} +(1.28518 - 1.28518i) q^{29} +(4.62682 + 2.49119i) q^{30} +(-0.795949 - 0.795949i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.48303 - 0.665327i) q^{33} +(2.50536 + 1.44647i) q^{34} +(-1.95228 + 1.20580i) q^{35} -2.52270i q^{36} +(1.64941 + 5.85486i) q^{37} +(0.0982545 + 0.0982545i) q^{38} +(-1.03256 - 0.276674i) q^{39} +(0.642592 + 2.14175i) q^{40} +(-6.11196 - 3.52874i) q^{41} +(2.08851 + 1.20580i) q^{42} +8.52588 q^{43} +(0.947314 + 0.546932i) q^{44} +(-4.10537 - 3.86858i) q^{45} +(0.195278 + 0.338232i) q^{46} +(6.69408 - 6.69408i) q^{47} +(1.66173 - 1.66173i) q^{48} +(5.15019 - 2.97346i) q^{49} +(4.47084 + 2.23865i) q^{50} +(-4.80728 - 4.80728i) q^{51} +(-0.227440 - 0.393937i) q^{52} +(-2.03337 + 7.58864i) q^{53} +(0.290312 - 1.08346i) q^{54} +(2.34278 - 0.702908i) q^{55} +(0.265598 + 0.991227i) q^{56} +(-0.163272 - 0.282796i) q^{57} +(-1.75559 - 0.470410i) q^{58} +(-0.934291 + 3.48682i) q^{59} +(-0.155976 - 5.25254i) q^{60} +(4.90553 - 1.31443i) q^{61} +(-0.291337 + 1.08729i) q^{62} +(-1.83054 - 1.83054i) q^{63} +1.00000 q^{64} +(-0.989863 - 0.233977i) q^{65} +(-1.81771 - 1.81771i) q^{66} +(12.3464 - 3.30819i) q^{67} -2.89294i q^{68} +(-0.237550 - 0.886550i) q^{69} +(2.02040 + 1.08783i) q^{70} +(3.63611 - 6.29793i) q^{71} +(-2.18472 + 1.26135i) q^{72} +(1.40473 - 1.40473i) q^{73} +(4.24575 - 4.35587i) q^{74} +(-8.78704 - 7.80099i) q^{75} +(0.0359636 - 0.134218i) q^{76} +(1.08427 - 0.290529i) q^{77} +(0.276674 + 1.03256i) q^{78} +(-4.98605 + 1.33601i) q^{79} +(1.53351 - 1.62737i) q^{80} +(-5.10205 + 8.83700i) q^{81} +7.05749i q^{82} +(1.08371 - 4.04446i) q^{83} -2.41160i q^{84} +(-4.70789 - 4.43635i) q^{85} +(-4.26294 - 7.38363i) q^{86} +(3.69902 + 2.13563i) q^{87} -1.09386i q^{88} +(-13.3347 - 3.57303i) q^{89} +(-1.29760 + 5.48965i) q^{90} +(-0.450888 - 0.120815i) q^{91} +(0.195278 - 0.338232i) q^{92} +(1.32265 - 2.29090i) q^{93} +(-9.14429 - 2.45020i) q^{94} +(-0.163272 - 0.264351i) q^{95} +(-2.26997 - 0.608236i) q^{96} +11.8906i q^{97} +(-5.15019 - 2.97346i) q^{98} +(1.37974 + 2.38979i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12 q - 6 q^{2} - 6 q^{4} + 2 q^{5} + 6 q^{6} - 4 q^{7} + 12 q^{8} + 18 q^{9}+O(q^{10})$$ 12 * q - 6 * q^2 - 6 * q^4 + 2 * q^5 + 6 * q^6 - 4 * q^7 + 12 * q^8 + 18 * q^9 $$12 q - 6 q^{2} - 6 q^{4} + 2 q^{5} + 6 q^{6} - 4 q^{7} + 12 q^{8} + 18 q^{9} - 4 q^{10} - 6 q^{12} + 8 q^{14} - 10 q^{15} - 6 q^{16} - 12 q^{17} - 18 q^{18} - 8 q^{19} + 2 q^{20} + 54 q^{21} - 6 q^{22} - 4 q^{23} - 14 q^{25} + 18 q^{27} - 4 q^{28} + 4 q^{29} - 4 q^{30} - 2 q^{31} - 6 q^{32} + 20 q^{33} + 12 q^{34} + 6 q^{35} + 14 q^{37} + 16 q^{38} - 30 q^{39} + 2 q^{40} + 12 q^{41} - 54 q^{42} + 44 q^{43} + 6 q^{44} - 60 q^{45} + 2 q^{46} - 28 q^{47} + 6 q^{48} + 24 q^{49} + 10 q^{50} - 8 q^{51} + 8 q^{53} - 18 q^{54} - 4 q^{56} - 28 q^{57} - 14 q^{58} + 14 q^{60} + 24 q^{61} - 14 q^{62} + 8 q^{63} + 12 q^{64} - 10 q^{65} + 8 q^{66} + 18 q^{67} - 40 q^{69} - 30 q^{70} + 18 q^{72} - 28 q^{73} + 38 q^{74} - 30 q^{75} - 8 q^{76} + 10 q^{77} + 48 q^{78} - 56 q^{79} - 4 q^{80} + 4 q^{81} + 14 q^{83} - 28 q^{85} - 22 q^{86} + 18 q^{87} - 2 q^{89} + 18 q^{90} + 38 q^{91} + 2 q^{92} - 16 q^{94} - 28 q^{95} - 6 q^{96} - 24 q^{98} + 28 q^{99}+O(q^{100})$$ 12 * q - 6 * q^2 - 6 * q^4 + 2 * q^5 + 6 * q^6 - 4 * q^7 + 12 * q^8 + 18 * q^9 - 4 * q^10 - 6 * q^12 + 8 * q^14 - 10 * q^15 - 6 * q^16 - 12 * q^17 - 18 * q^18 - 8 * q^19 + 2 * q^20 + 54 * q^21 - 6 * q^22 - 4 * q^23 - 14 * q^25 + 18 * q^27 - 4 * q^28 + 4 * q^29 - 4 * q^30 - 2 * q^31 - 6 * q^32 + 20 * q^33 + 12 * q^34 + 6 * q^35 + 14 * q^37 + 16 * q^38 - 30 * q^39 + 2 * q^40 + 12 * q^41 - 54 * q^42 + 44 * q^43 + 6 * q^44 - 60 * q^45 + 2 * q^46 - 28 * q^47 + 6 * q^48 + 24 * q^49 + 10 * q^50 - 8 * q^51 + 8 * q^53 - 18 * q^54 - 4 * q^56 - 28 * q^57 - 14 * q^58 + 14 * q^60 + 24 * q^61 - 14 * q^62 + 8 * q^63 + 12 * q^64 - 10 * q^65 + 8 * q^66 + 18 * q^67 - 40 * q^69 - 30 * q^70 + 18 * q^72 - 28 * q^73 + 38 * q^74 - 30 * q^75 - 8 * q^76 + 10 * q^77 + 48 * q^78 - 56 * q^79 - 4 * q^80 + 4 * q^81 + 14 * q^83 - 28 * q^85 - 22 * q^86 + 18 * q^87 - 2 * q^89 + 18 * q^90 + 38 * q^91 + 2 * q^92 - 16 * q^94 - 28 * q^95 - 6 * q^96 - 24 * q^98 + 28 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/370\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$297$$ $$\chi(n)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 0.866025i −0.353553 0.612372i
$$3$$ 0.608236 + 2.26997i 0.351165 + 1.31057i 0.885242 + 0.465130i $$0.153992\pi$$
−0.534077 + 0.845436i $$0.679341\pi$$
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ 0.642592 + 2.14175i 0.287376 + 0.957818i
$$6$$ 1.66173 1.66173i 0.678399 0.678399i
$$7$$ 0.265598 + 0.991227i 0.100387 + 0.374649i 0.997781 0.0665810i $$-0.0212091\pi$$
−0.897394 + 0.441230i $$0.854542\pi$$
$$8$$ 1.00000 0.353553
$$9$$ −2.18472 + 1.26135i −0.728240 + 0.420450i
$$10$$ 1.53351 1.62737i 0.484939 0.514621i
$$11$$ 1.09386i 0.329812i −0.986309 0.164906i $$-0.947268\pi$$
0.986309 0.164906i $$-0.0527321\pi$$
$$12$$ −2.26997 0.608236i −0.655283 0.175583i
$$13$$ −0.227440 + 0.393937i −0.0630804 + 0.109258i −0.895841 0.444375i $$-0.853426\pi$$
0.832760 + 0.553633i $$0.186759\pi$$
$$14$$ 0.725629 0.725629i 0.193932 0.193932i
$$15$$ −4.47084 + 2.76135i −1.15437 + 0.712977i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −2.50536 + 1.44647i −0.607638 + 0.350820i −0.772040 0.635573i $$-0.780764\pi$$
0.164403 + 0.986393i $$0.447430\pi$$
$$18$$ 2.18472 + 1.26135i 0.514943 + 0.297303i
$$19$$ −0.134218 + 0.0359636i −0.0307917 + 0.00825062i −0.274182 0.961678i $$-0.588407\pi$$
0.243390 + 0.969928i $$0.421740\pi$$
$$20$$ −2.17610 0.514372i −0.486591 0.115017i
$$21$$ −2.08851 + 1.20580i −0.455749 + 0.263127i
$$22$$ −0.947314 + 0.546932i −0.201968 + 0.116606i
$$23$$ −0.390557 −0.0814367 −0.0407183 0.999171i $$-0.512965\pi$$
−0.0407183 + 0.999171i $$0.512965\pi$$
$$24$$ 0.608236 + 2.26997i 0.124156 + 0.463355i
$$25$$ −4.17415 + 2.75254i −0.834830 + 0.550508i
$$26$$ 0.454879 0.0892091
$$27$$ 0.793148 + 0.793148i 0.152641 + 0.152641i
$$28$$ −0.991227 0.265598i −0.187324 0.0501934i
$$29$$ 1.28518 1.28518i 0.238653 0.238653i −0.577639 0.816292i $$-0.696026\pi$$
0.816292 + 0.577639i $$0.196026\pi$$
$$30$$ 4.62682 + 2.49119i 0.844738 + 0.454827i
$$31$$ −0.795949 0.795949i −0.142957 0.142957i 0.632006 0.774963i $$-0.282232\pi$$
−0.774963 + 0.632006i $$0.782232\pi$$
$$32$$ −0.500000 + 0.866025i −0.0883883 + 0.153093i
$$33$$ 2.48303 0.665327i 0.432241 0.115819i
$$34$$ 2.50536 + 1.44647i 0.429665 + 0.248067i
$$35$$ −1.95228 + 1.20580i −0.329996 + 0.203817i
$$36$$ 2.52270i 0.420450i
$$37$$ 1.64941 + 5.85486i 0.271162 + 0.962534i
$$38$$ 0.0982545 + 0.0982545i 0.0159390 + 0.0159390i
$$39$$ −1.03256 0.276674i −0.165342 0.0443032i
$$40$$ 0.642592 + 2.14175i 0.101603 + 0.338640i
$$41$$ −6.11196 3.52874i −0.954528 0.551097i −0.0600436 0.998196i $$-0.519124\pi$$
−0.894485 + 0.447099i $$0.852457\pi$$
$$42$$ 2.08851 + 1.20580i 0.322263 + 0.186059i
$$43$$ 8.52588 1.30018 0.650092 0.759855i $$-0.274730\pi$$
0.650092 + 0.759855i $$0.274730\pi$$
$$44$$ 0.947314 + 0.546932i 0.142813 + 0.0824531i
$$45$$ −4.10537 3.86858i −0.611993 0.576694i
$$46$$ 0.195278 + 0.338232i 0.0287922 + 0.0498696i
$$47$$ 6.69408 6.69408i 0.976432 0.976432i −0.0232961 0.999729i $$-0.507416\pi$$
0.999729 + 0.0232961i $$0.00741606\pi$$
$$48$$ 1.66173 1.66173i 0.239850 0.239850i
$$49$$ 5.15019 2.97346i 0.735741 0.424780i
$$50$$ 4.47084 + 2.23865i 0.632273 + 0.316593i
$$51$$ −4.80728 4.80728i −0.673154 0.673154i
$$52$$ −0.227440 0.393937i −0.0315402 0.0546292i
$$53$$ −2.03337 + 7.58864i −0.279305 + 1.04238i 0.673597 + 0.739099i $$0.264749\pi$$
−0.952901 + 0.303280i $$0.901918\pi$$
$$54$$ 0.290312 1.08346i 0.0395065 0.147440i
$$55$$ 2.34278 0.702908i 0.315900 0.0947801i
$$56$$ 0.265598 + 0.991227i 0.0354921 + 0.132458i
$$57$$ −0.163272 0.282796i −0.0216260 0.0374573i
$$58$$ −1.75559 0.470410i −0.230521 0.0617679i
$$59$$ −0.934291 + 3.48682i −0.121634 + 0.453946i −0.999697 0.0245994i $$-0.992169\pi$$
0.878063 + 0.478545i $$0.158836\pi$$
$$60$$ −0.155976 5.25254i −0.0201365 0.678100i
$$61$$ 4.90553 1.31443i 0.628089 0.168296i 0.0692867 0.997597i $$-0.477928\pi$$
0.558802 + 0.829301i $$0.311261\pi$$
$$62$$ −0.291337 + 1.08729i −0.0369999 + 0.138085i
$$63$$ −1.83054 1.83054i −0.230627 0.230627i
$$64$$ 1.00000 0.125000
$$65$$ −0.989863 0.233977i −0.122777 0.0290213i
$$66$$ −1.81771 1.81771i −0.223744 0.223744i
$$67$$ 12.3464 3.30819i 1.50835 0.404160i 0.592461 0.805599i $$-0.298156\pi$$
0.915886 + 0.401439i $$0.131490\pi$$
$$68$$ 2.89294i 0.350820i
$$69$$ −0.237550 0.886550i −0.0285977 0.106728i
$$70$$ 2.02040 + 1.08783i 0.241483 + 0.130020i
$$71$$ 3.63611 6.29793i 0.431527 0.747426i −0.565478 0.824763i $$-0.691308\pi$$
0.997005 + 0.0773369i $$0.0246417\pi$$
$$72$$ −2.18472 + 1.26135i −0.257472 + 0.148651i
$$73$$ 1.40473 1.40473i 0.164411 0.164411i −0.620107 0.784518i $$-0.712911\pi$$
0.784518 + 0.620107i $$0.212911\pi$$
$$74$$ 4.24575 4.35587i 0.493559 0.506359i
$$75$$ −8.78704 7.80099i −1.01464 0.900781i
$$76$$ 0.0359636 0.134218i 0.00412531 0.0153959i
$$77$$ 1.08427 0.290529i 0.123564 0.0331088i
$$78$$ 0.276674 + 1.03256i 0.0313271 + 0.116914i
$$79$$ −4.98605 + 1.33601i −0.560975 + 0.150313i −0.528154 0.849149i $$-0.677116\pi$$
−0.0328206 + 0.999461i $$0.510449\pi$$
$$80$$ 1.53351 1.62737i 0.171452 0.181946i
$$81$$ −5.10205 + 8.83700i −0.566894 + 0.981889i
$$82$$ 7.05749i 0.779369i
$$83$$ 1.08371 4.04446i 0.118953 0.443938i −0.880599 0.473861i $$-0.842860\pi$$
0.999552 + 0.0299237i $$0.00952644\pi$$
$$84$$ 2.41160i 0.263127i
$$85$$ −4.70789 4.43635i −0.510642 0.481189i
$$86$$ −4.26294 7.38363i −0.459685 0.796197i
$$87$$ 3.69902 + 2.13563i 0.396577 + 0.228964i
$$88$$ 1.09386i 0.116606i
$$89$$ −13.3347 3.57303i −1.41348 0.378741i −0.530314 0.847801i $$-0.677926\pi$$
−0.883166 + 0.469061i $$0.844593\pi$$
$$90$$ −1.29760 + 5.48965i −0.136780 + 0.578660i
$$91$$ −0.450888 0.120815i −0.0472660 0.0126649i
$$92$$ 0.195278 0.338232i 0.0203592 0.0352631i
$$93$$ 1.32265 2.29090i 0.137153 0.237555i
$$94$$ −9.14429 2.45020i −0.943161 0.252719i
$$95$$ −0.163272 0.264351i −0.0167514 0.0271219i
$$96$$ −2.26997 0.608236i −0.231677 0.0620778i
$$97$$ 11.8906i 1.20731i 0.797245 + 0.603656i $$0.206290\pi$$
−0.797245 + 0.603656i $$0.793710\pi$$
$$98$$ −5.15019 2.97346i −0.520248 0.300365i
$$99$$ 1.37974 + 2.38979i 0.138669 + 0.240183i
$$100$$ −0.296693 4.99119i −0.0296693 0.499119i
$$101$$ 2.62938i 0.261633i −0.991407 0.130816i $$-0.958240\pi$$
0.991407 0.130816i $$-0.0417598\pi$$
$$102$$ −1.75959 + 6.56687i −0.174225 + 0.650217i
$$103$$ 6.18963i 0.609882i −0.952371 0.304941i $$-0.901363\pi$$
0.952371 0.304941i $$-0.0986368\pi$$
$$104$$ −0.227440 + 0.393937i −0.0223023 + 0.0386287i
$$105$$ −3.92457 3.69821i −0.382999 0.360908i
$$106$$ 7.58864 2.03337i 0.737074 0.197498i
$$107$$ −1.98266 7.39938i −0.191671 0.715325i −0.993104 0.117240i $$-0.962595\pi$$
0.801433 0.598085i $$-0.204071\pi$$
$$108$$ −1.08346 + 0.290312i −0.104256 + 0.0279353i
$$109$$ 0.145164 0.541758i 0.0139041 0.0518910i −0.958625 0.284671i $$-0.908116\pi$$
0.972529 + 0.232780i $$0.0747823\pi$$
$$110$$ −1.78013 1.67745i −0.169728 0.159939i
$$111$$ −12.2871 + 7.30525i −1.16624 + 0.693384i
$$112$$ 0.725629 0.725629i 0.0685655 0.0685655i
$$113$$ 4.31602 2.49186i 0.406017 0.234414i −0.283060 0.959102i $$-0.591349\pi$$
0.689077 + 0.724688i $$0.258016\pi$$
$$114$$ −0.163272 + 0.282796i −0.0152919 + 0.0264863i
$$115$$ −0.250969 0.836473i −0.0234029 0.0780015i
$$116$$ 0.470410 + 1.75559i 0.0436765 + 0.163003i
$$117$$ 1.14752i 0.106088i
$$118$$ 3.48682 0.934291i 0.320988 0.0860085i
$$119$$ −2.09920 2.09920i −0.192433 0.192433i
$$120$$ −4.47084 + 2.76135i −0.408130 + 0.252075i
$$121$$ 9.80346 0.891224
$$122$$ −3.59110 3.59110i −0.325123 0.325123i
$$123$$ 4.29262 16.0203i 0.387052 1.44450i
$$124$$ 1.08729 0.291337i 0.0976412 0.0261629i
$$125$$ −8.57751 7.17121i −0.767196 0.641413i
$$126$$ −0.670025 + 2.50057i −0.0596905 + 0.222768i
$$127$$ 20.3452 + 5.45148i 1.80535 + 0.483741i 0.994792 0.101924i $$-0.0324999\pi$$
0.810553 + 0.585665i $$0.199167\pi$$
$$128$$ −0.500000 0.866025i −0.0441942 0.0765466i
$$129$$ 5.18575 + 19.3535i 0.456579 + 1.70398i
$$130$$ 0.292302 + 0.974235i 0.0256366 + 0.0854461i
$$131$$ 4.71929 17.6126i 0.412327 1.53882i −0.377804 0.925885i $$-0.623321\pi$$
0.790131 0.612938i $$-0.210012\pi$$
$$132$$ −0.665327 + 2.48303i −0.0579093 + 0.216120i
$$133$$ −0.0712962 0.123489i −0.00618217 0.0107078i
$$134$$ −9.03816 9.03816i −0.780778 0.780778i
$$135$$ −1.18905 + 2.20839i −0.102337 + 0.190068i
$$136$$ −2.50536 + 1.44647i −0.214832 + 0.124034i
$$137$$ −11.0845 + 11.0845i −0.947009 + 0.947009i −0.998665 0.0516564i $$-0.983550\pi$$
0.0516564 + 0.998665i $$0.483550\pi$$
$$138$$ −0.649000 + 0.649000i −0.0552465 + 0.0552465i
$$139$$ −6.67857 11.5676i −0.566469 0.981152i −0.996911 0.0785346i $$-0.974976\pi$$
0.430443 0.902618i $$-0.358357\pi$$
$$140$$ −0.0681103 2.29363i −0.00575637 0.193847i
$$141$$ 19.2669 + 11.1238i 1.62257 + 0.936790i
$$142$$ −7.27222 −0.610271
$$143$$ 0.430913 + 0.248788i 0.0360348 + 0.0208047i
$$144$$ 2.18472 + 1.26135i 0.182060 + 0.105112i
$$145$$ 3.57839 + 1.92669i 0.297169 + 0.160003i
$$146$$ −1.91889 0.514166i −0.158809 0.0425527i
$$147$$ 9.88219 + 9.88219i 0.815069 + 0.815069i
$$148$$ −5.89517 1.49900i −0.484580 0.123217i
$$149$$ 2.61183i 0.213969i −0.994261 0.106985i $$-0.965880\pi$$
0.994261 0.106985i $$-0.0341196\pi$$
$$150$$ −2.36234 + 11.5103i −0.192884 + 0.939811i
$$151$$ 19.3408 + 11.1664i 1.57393 + 0.908711i 0.995680 + 0.0928532i $$0.0295987\pi$$
0.578253 + 0.815857i $$0.303735\pi$$
$$152$$ −0.134218 + 0.0359636i −0.0108865 + 0.00291704i
$$153$$ 3.64900 6.32025i 0.295004 0.510962i
$$154$$ −0.793739 0.793739i −0.0639613 0.0639613i
$$155$$ 1.19325 2.21619i 0.0958441 0.178009i
$$156$$ 0.755886 0.755886i 0.0605194 0.0605194i
$$157$$ 3.09826 + 0.830175i 0.247268 + 0.0662552i 0.380324 0.924853i $$-0.375812\pi$$
−0.133056 + 0.991108i $$0.542479\pi$$
$$158$$ 3.65004 + 3.65004i 0.290382 + 0.290382i
$$159$$ −18.4627 −1.46419
$$160$$ −2.17610 0.514372i −0.172036 0.0406647i
$$161$$ −0.103731 0.387130i −0.00817517 0.0305101i
$$162$$ 10.2041 0.801709
$$163$$ −17.3556 + 10.0203i −1.35940 + 0.784847i −0.989542 0.144243i $$-0.953925\pi$$
−0.369853 + 0.929090i $$0.620592\pi$$
$$164$$ 6.11196 3.52874i 0.477264 0.275549i
$$165$$ 3.02054 + 4.89049i 0.235149 + 0.380724i
$$166$$ −4.04446 + 1.08371i −0.313911 + 0.0841123i
$$167$$ 4.22666 + 2.44027i 0.327069 + 0.188833i 0.654539 0.756028i $$-0.272863\pi$$
−0.327470 + 0.944862i $$0.606196\pi$$
$$168$$ −2.08851 + 1.20580i −0.161132 + 0.0930294i
$$169$$ 6.39654 + 11.0791i 0.492042 + 0.852241i
$$170$$ −1.48804 + 6.29532i −0.114128 + 0.482829i
$$171$$ 0.247866 0.247866i 0.0189548 0.0189548i
$$172$$ −4.26294 + 7.38363i −0.325046 + 0.562997i
$$173$$ 15.4323 + 4.13508i 1.17330 + 0.314384i 0.792265 0.610177i $$-0.208902\pi$$
0.381033 + 0.924561i $$0.375568\pi$$
$$174$$ 4.27126i 0.323803i
$$175$$ −3.83704 3.40646i −0.290053 0.257504i
$$176$$ −0.947314 + 0.546932i −0.0714065 + 0.0412265i
$$177$$ −8.48324 −0.637639
$$178$$ 3.57303 + 13.3347i 0.267810 + 0.999481i
$$179$$ −8.92638 + 8.92638i −0.667189 + 0.667189i −0.957064 0.289875i $$-0.906386\pi$$
0.289875 + 0.957064i $$0.406386\pi$$
$$180$$ 5.40298 1.62107i 0.402714 0.120827i
$$181$$ 8.68014 15.0344i 0.645190 1.11750i −0.339068 0.940762i $$-0.610112\pi$$
0.984258 0.176740i $$-0.0565550\pi$$
$$182$$ 0.120815 + 0.450888i 0.00895542 + 0.0334221i
$$183$$ 5.96744 + 10.3359i 0.441126 + 0.764052i
$$184$$ −0.390557 −0.0287922
$$185$$ −11.4797 + 7.29491i −0.844007 + 0.536333i
$$186$$ −2.64530 −0.193963
$$187$$ 1.58224 + 2.74052i 0.115705 + 0.200406i
$$188$$ 2.45020 + 9.14429i 0.178700 + 0.666916i
$$189$$ −0.575531 + 0.996849i −0.0418637 + 0.0725101i
$$190$$ −0.147299 + 0.273574i −0.0106862 + 0.0198471i
$$191$$ 7.40119 7.40119i 0.535531 0.535531i −0.386682 0.922213i $$-0.626379\pi$$
0.922213 + 0.386682i $$0.126379\pi$$
$$192$$ 0.608236 + 2.26997i 0.0438956 + 0.163821i
$$193$$ 5.47453 0.394065 0.197033 0.980397i $$-0.436870\pi$$
0.197033 + 0.980397i $$0.436870\pi$$
$$194$$ 10.2976 5.94532i 0.739325 0.426849i
$$195$$ −0.0709504 2.38927i −0.00508086 0.171099i
$$196$$ 5.94693i 0.424780i
$$197$$ −5.41467 1.45086i −0.385779 0.103369i 0.0607164 0.998155i $$-0.480661\pi$$
−0.446496 + 0.894786i $$0.647328\pi$$
$$198$$ 1.37974 2.38979i 0.0980541 0.169835i
$$199$$ −10.8649 + 10.8649i −0.770191 + 0.770191i −0.978140 0.207948i $$-0.933321\pi$$
0.207948 + 0.978140i $$0.433321\pi$$
$$200$$ −4.17415 + 2.75254i −0.295157 + 0.194634i
$$201$$ 15.0190 + 26.0136i 1.05936 + 1.83486i
$$202$$ −2.27711 + 1.31469i −0.160217 + 0.0925011i
$$203$$ 1.61525 + 0.932566i 0.113368 + 0.0654533i
$$204$$ 6.56687 1.75959i 0.459773 0.123196i
$$205$$ 3.63017 15.3578i 0.253542 1.07264i
$$206$$ −5.36037 + 3.09481i −0.373475 + 0.215626i
$$207$$ 0.853257 0.492628i 0.0593054 0.0342400i
$$208$$ 0.454879 0.0315402
$$209$$ 0.0393393 + 0.146816i 0.00272116 + 0.0101555i
$$210$$ −1.24046 + 5.24788i −0.0855997 + 0.362138i
$$211$$ 4.61625 0.317796 0.158898 0.987295i $$-0.449206\pi$$
0.158898 + 0.987295i $$0.449206\pi$$
$$212$$ −5.55527 5.55527i −0.381537 0.381537i
$$213$$ 16.5077 + 4.42322i 1.13109 + 0.303074i
$$214$$ −5.41672 + 5.41672i −0.370280 + 0.370280i
$$215$$ 5.47867 + 18.2603i 0.373642 + 1.24534i
$$216$$ 0.793148 + 0.793148i 0.0539669 + 0.0539669i
$$217$$ 0.577563 1.00037i 0.0392075 0.0679094i
$$218$$ −0.541758 + 0.145164i −0.0366925 + 0.00983172i
$$219$$ 4.04309 + 2.33428i 0.273207 + 0.157736i
$$220$$ −0.562653 + 2.38036i −0.0379340 + 0.160484i
$$221$$ 1.31594i 0.0885194i
$$222$$ 12.4701 + 6.98833i 0.836938 + 0.469026i
$$223$$ −13.3465 13.3465i −0.893748 0.893748i 0.101126 0.994874i $$-0.467756\pi$$
−0.994874 + 0.101126i $$0.967756\pi$$
$$224$$ −0.991227 0.265598i −0.0662291 0.0177460i
$$225$$ 5.64744 11.2786i 0.376496 0.751906i
$$226$$ −4.31602 2.49186i −0.287098 0.165756i
$$227$$ −8.86763 5.11973i −0.588565 0.339808i 0.175965 0.984396i $$-0.443696\pi$$
−0.764530 + 0.644588i $$0.777029\pi$$
$$228$$ 0.326545 0.0216260
$$229$$ 0.542093 + 0.312978i 0.0358225 + 0.0206822i 0.517804 0.855499i $$-0.326750\pi$$
−0.481982 + 0.876181i $$0.660083\pi$$
$$230$$ −0.598923 + 0.635582i −0.0394918 + 0.0419090i
$$231$$ 1.31898 + 2.28454i 0.0867825 + 0.150312i
$$232$$ 1.28518 1.28518i 0.0843765 0.0843765i
$$233$$ −4.49284 + 4.49284i −0.294335 + 0.294335i −0.838790 0.544455i $$-0.816737\pi$$
0.544455 + 0.838790i $$0.316737\pi$$
$$234$$ −0.993783 + 0.573761i −0.0649657 + 0.0375079i
$$235$$ 18.6386 + 10.0355i 1.21585 + 0.654641i
$$236$$ −2.55253 2.55253i −0.166156 0.166156i
$$237$$ −6.06539 10.5056i −0.393989 0.682410i
$$238$$ −0.768359 + 2.86756i −0.0498053 + 0.185876i
$$239$$ 4.58065 17.0952i 0.296298 1.10580i −0.643884 0.765123i $$-0.722678\pi$$
0.940181 0.340674i $$-0.110655\pi$$
$$240$$ 4.62682 + 2.49119i 0.298660 + 0.160806i
$$241$$ −0.941745 3.51464i −0.0606631 0.226398i 0.928938 0.370235i $$-0.120723\pi$$
−0.989601 + 0.143837i $$0.954056\pi$$
$$242$$ −4.90173 8.49005i −0.315095 0.545761i
$$243$$ −19.9126 5.33555i −1.27739 0.342276i
$$244$$ −1.31443 + 4.90553i −0.0841480 + 0.314045i
$$245$$ 9.67787 + 9.11967i 0.618297 + 0.582635i
$$246$$ −16.0203 + 4.29262i −1.02141 + 0.273687i
$$247$$ 0.0163591 0.0610530i 0.00104090 0.00388471i
$$248$$ −0.795949 0.795949i −0.0505428 0.0505428i
$$249$$ 9.83995 0.623581
$$250$$ −1.92169 + 11.0140i −0.121539 + 0.696583i
$$251$$ −15.8289 15.8289i −0.999112 0.999112i 0.000887213 1.00000i $$-0.499718\pi$$
−1.00000 0.000887213i $$0.999718\pi$$
$$252$$ 2.50057 0.670025i 0.157521 0.0422076i
$$253$$ 0.427216i 0.0268588i
$$254$$ −5.45148 20.3452i −0.342056 1.27657i
$$255$$ 7.20685 13.3851i 0.451310 0.838207i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −18.9356 + 10.9325i −1.18117 + 0.681949i −0.956285 0.292436i $$-0.905534\pi$$
−0.224886 + 0.974385i $$0.572201\pi$$
$$258$$ 14.1677 14.1677i 0.882044 0.882044i
$$259$$ −5.36542 + 3.18999i −0.333391 + 0.198216i
$$260$$ 0.697562 0.740258i 0.0432609 0.0459089i
$$261$$ −1.18670 + 4.42883i −0.0734550 + 0.274138i
$$262$$ −17.6126 + 4.71929i −1.08811 + 0.291559i
$$263$$ −2.22756 8.31336i −0.137357 0.512624i −0.999977 0.00677111i $$-0.997845\pi$$
0.862620 0.505852i $$-0.168822\pi$$
$$264$$ 2.48303 0.665327i 0.152820 0.0409480i
$$265$$ −17.5596 + 0.521439i −1.07868 + 0.0320317i
$$266$$ −0.0712962 + 0.123489i −0.00437145 + 0.00757158i
$$267$$ 32.4427i 1.98546i
$$268$$ −3.30819 + 12.3464i −0.202080 + 0.754173i
$$269$$ 5.72668i 0.349162i 0.984643 + 0.174581i $$0.0558570\pi$$
−0.984643 + 0.174581i $$0.944143\pi$$
$$270$$ 2.50705 0.0744480i 0.152574 0.00453076i
$$271$$ 3.30228 + 5.71972i 0.200599 + 0.347448i 0.948722 0.316113i $$-0.102378\pi$$
−0.748122 + 0.663561i $$0.769044\pi$$
$$272$$ 2.50536 + 1.44647i 0.151909 + 0.0877050i
$$273$$ 1.09699i 0.0663926i
$$274$$ 15.1416 + 4.05719i 0.914740 + 0.245104i
$$275$$ 3.01090 + 4.56595i 0.181564 + 0.275337i
$$276$$ 0.886550 + 0.237550i 0.0533641 + 0.0142989i
$$277$$ −4.44783 + 7.70387i −0.267244 + 0.462881i −0.968149 0.250374i $$-0.919446\pi$$
0.700905 + 0.713255i $$0.252780\pi$$
$$278$$ −6.67857 + 11.5676i −0.400554 + 0.693780i
$$279$$ 2.74289 + 0.734956i 0.164213 + 0.0440007i
$$280$$ −1.95228 + 1.20580i −0.116671 + 0.0720603i
$$281$$ 1.59322 + 0.426903i 0.0950437 + 0.0254669i 0.306027 0.952023i $$-0.401000\pi$$
−0.210984 + 0.977490i $$0.567667\pi$$
$$282$$ 22.2475i 1.32482i
$$283$$ −28.2496 16.3099i −1.67926 0.969522i −0.962133 0.272582i $$-0.912122\pi$$
−0.717129 0.696940i $$-0.754544\pi$$
$$284$$ 3.63611 + 6.29793i 0.215763 + 0.373713i
$$285$$ 0.500760 0.531411i 0.0296625 0.0314781i
$$286$$ 0.497576i 0.0294223i
$$287$$ 1.87446 6.99557i 0.110646 0.412936i
$$288$$ 2.52270i 0.148651i
$$289$$ −4.31546 + 7.47460i −0.253851 + 0.439682i
$$290$$ −0.120632 4.06232i −0.00708378 0.238548i
$$291$$ −26.9914 + 7.23232i −1.58226 + 0.423966i
$$292$$ 0.514166 + 1.91889i 0.0300893 + 0.112295i
$$293$$ −23.1842 + 6.21218i −1.35443 + 0.362919i −0.861769 0.507300i $$-0.830643\pi$$
−0.492664 + 0.870220i $$0.663977\pi$$
$$294$$ 3.61713 13.4993i 0.210955 0.787296i
$$295$$ −8.06825 + 0.239590i −0.469752 + 0.0139495i
$$296$$ 1.64941 + 5.85486i 0.0958702 + 0.340307i
$$297$$ 0.867596 0.867596i 0.0503430 0.0503430i
$$298$$ −2.26191 + 1.30592i −0.131029 + 0.0756496i
$$299$$ 0.0888280 0.153855i 0.00513706 0.00889764i
$$300$$ 11.1494 3.70930i 0.643709 0.214157i
$$301$$ 2.26446 + 8.45108i 0.130521 + 0.487112i
$$302$$ 22.3328i 1.28511i
$$303$$ 5.96860 1.59928i 0.342887 0.0918763i
$$304$$ 0.0982545 + 0.0982545i 0.00563528 + 0.00563528i
$$305$$ 5.96744 + 9.66176i 0.341695 + 0.553231i
$$306$$ −7.29800 −0.417199
$$307$$ −14.2681 14.2681i −0.814321 0.814321i 0.170957 0.985278i $$-0.445314\pi$$
−0.985278 + 0.170957i $$0.945314\pi$$
$$308$$ −0.290529 + 1.08427i −0.0165544 + 0.0617819i
$$309$$ 14.0502 3.76475i 0.799291 0.214169i
$$310$$ −2.51590 + 0.0747108i −0.142894 + 0.00424329i
$$311$$ 1.96729 7.34201i 0.111555 0.416327i −0.887452 0.460901i $$-0.847526\pi$$
0.999006 + 0.0445738i $$0.0141930\pi$$
$$312$$ −1.03256 0.276674i −0.0584572 0.0156636i
$$313$$ −16.2812 28.1999i −0.920270 1.59395i −0.798997 0.601335i $$-0.794636\pi$$
−0.121273 0.992619i $$-0.538698\pi$$
$$314$$ −0.830175 3.09826i −0.0468495 0.174845i
$$315$$ 2.74426 5.09685i 0.154622 0.287175i
$$316$$ 1.33601 4.98605i 0.0751564 0.280487i
$$317$$ 6.76893 25.2620i 0.380181 1.41885i −0.465444 0.885077i $$-0.654106\pi$$
0.845625 0.533777i $$-0.179228\pi$$
$$318$$ 9.23136 + 15.9892i 0.517669 + 0.896629i
$$319$$ −1.40582 1.40582i −0.0787106 0.0787106i
$$320$$ 0.642592 + 2.14175i 0.0359220 + 0.119727i
$$321$$ 15.5904 9.00114i 0.870173 0.502394i
$$322$$ −0.283399 + 0.283399i −0.0157932 + 0.0157932i
$$323$$ 0.284244 0.284244i 0.0158157 0.0158157i
$$324$$ −5.10205 8.83700i −0.283447 0.490945i
$$325$$ −0.134959 2.27039i −0.00748620 0.125938i
$$326$$ 17.3556 + 10.0203i 0.961238 + 0.554971i
$$327$$ 1.31807 0.0728892
$$328$$ −6.11196 3.52874i −0.337477 0.194842i
$$329$$ 8.41330 + 4.85742i 0.463840 + 0.267798i
$$330$$ 2.72502 5.06111i 0.150008 0.278605i
$$331$$ −16.9750 4.54843i −0.933029 0.250004i −0.239883 0.970802i $$-0.577109\pi$$
−0.693146 + 0.720798i $$0.743776\pi$$
$$332$$ 2.96075 + 2.96075i 0.162492 + 0.162492i
$$333$$ −10.9885 10.7108i −0.602168 0.586946i
$$334$$ 4.88053i 0.267051i
$$335$$ 15.0190 + 24.3169i 0.820575 + 1.32858i
$$336$$ 2.08851 + 1.20580i 0.113937 + 0.0657817i
$$337$$ −21.2283 + 5.68810i −1.15638 + 0.309851i −0.785519 0.618838i $$-0.787604\pi$$
−0.370860 + 0.928689i $$0.620937\pi$$
$$338$$ 6.39654 11.0791i 0.347926 0.602626i
$$339$$ 8.28159 + 8.28159i 0.449794 + 0.449794i
$$340$$ 6.19593 1.85898i 0.336022 0.100817i
$$341$$ −0.870660 + 0.870660i −0.0471489 + 0.0471489i
$$342$$ −0.338592 0.0907254i −0.0183089 0.00490587i
$$343$$ 9.39466 + 9.39466i 0.507264 + 0.507264i
$$344$$ 8.52588 0.459685
$$345$$ 1.74612 1.07846i 0.0940078 0.0580625i
$$346$$ −4.13508 15.4323i −0.222303 0.829647i
$$347$$ 12.3387 0.662377 0.331189 0.943565i $$-0.392550\pi$$
0.331189 + 0.943565i $$0.392550\pi$$
$$348$$ −3.69902 + 2.13563i −0.198288 + 0.114482i
$$349$$ 19.7732 11.4160i 1.05843 0.611087i 0.133435 0.991058i $$-0.457399\pi$$
0.924999 + 0.379971i $$0.124066\pi$$
$$350$$ −1.03156 + 5.02620i −0.0551393 + 0.268662i
$$351$$ −0.492844 + 0.132057i −0.0263061 + 0.00704869i
$$352$$ 0.947314 + 0.546932i 0.0504920 + 0.0291516i
$$353$$ −14.7854 + 8.53634i −0.786946 + 0.454343i −0.838886 0.544307i $$-0.816793\pi$$
0.0519405 + 0.998650i $$0.483459\pi$$
$$354$$ 4.24162 + 7.34670i 0.225439 + 0.390473i
$$355$$ 15.8251 + 3.74062i 0.839909 + 0.198532i
$$356$$ 9.76171 9.76171i 0.517369 0.517369i
$$357$$ 3.48830 6.04191i 0.184620 0.319772i
$$358$$ 12.1937 + 3.26728i 0.644455 + 0.172681i
$$359$$ 20.3975i 1.07654i 0.842773 + 0.538269i $$0.180922\pi$$
−0.842773 + 0.538269i $$0.819078\pi$$
$$360$$ −4.10537 3.86858i −0.216372 0.203892i
$$361$$ −16.4378 + 9.49035i −0.865145 + 0.499492i
$$362$$ −17.3603 −0.912436
$$363$$ 5.96281 + 22.2535i 0.312967 + 1.16801i
$$364$$ 0.330073 0.330073i 0.0173005 0.0173005i
$$365$$ 3.91123 + 2.10590i 0.204723 + 0.110228i
$$366$$ 5.96744 10.3359i 0.311923 0.540267i
$$367$$ 3.45216 + 12.8836i 0.180201 + 0.672521i 0.995607 + 0.0936308i $$0.0298473\pi$$
−0.815406 + 0.578890i $$0.803486\pi$$
$$368$$ 0.195278 + 0.338232i 0.0101796 + 0.0176316i
$$369$$ 17.8039 0.926834
$$370$$ 12.0574 + 6.29428i 0.626837 + 0.327224i
$$371$$ −8.06212 −0.418565
$$372$$ 1.32265 + 2.29090i 0.0685763 + 0.118778i
$$373$$ −4.51612 16.8544i −0.233836 0.872688i −0.978670 0.205438i $$-0.934138\pi$$
0.744834 0.667250i $$-0.232529\pi$$
$$374$$ 1.58224 2.74052i 0.0818156 0.141709i
$$375$$ 11.0613 23.8325i 0.571201 1.23070i
$$376$$ 6.69408 6.69408i 0.345221 0.345221i
$$377$$ 0.213980 + 0.798583i 0.0110205 + 0.0411291i
$$378$$ 1.15106 0.0592043
$$379$$ 21.7843 12.5772i 1.11898 0.646045i 0.177842 0.984059i $$-0.443089\pi$$
0.941141 + 0.338014i $$0.109755\pi$$
$$380$$ 0.310571 0.00922254i 0.0159320 0.000473106i
$$381$$ 49.4987i 2.53590i
$$382$$ −10.1102 2.70902i −0.517284 0.138606i
$$383$$ −5.36863 + 9.29874i −0.274324 + 0.475143i −0.969964 0.243247i $$-0.921787\pi$$
0.695640 + 0.718390i $$0.255121\pi$$
$$384$$ 1.66173 1.66173i 0.0847998 0.0847998i
$$385$$ 1.31898 + 2.13553i 0.0672215 + 0.108837i
$$386$$ −2.73726 4.74108i −0.139323 0.241315i
$$387$$ −18.6267 + 10.7541i −0.946847 + 0.546662i
$$388$$ −10.2976 5.94532i −0.522782 0.301828i
$$389$$ 29.4549 7.89241i 1.49342 0.400161i 0.582531 0.812808i $$-0.302062\pi$$
0.910891 + 0.412647i $$0.135396\pi$$
$$390$$ −2.03369 + 1.25608i −0.102980 + 0.0636041i
$$391$$ 0.978483 0.564927i 0.0494840 0.0285696i
$$392$$ 5.15019 2.97346i 0.260124 0.150183i
$$393$$ 42.8505 2.16152
$$394$$ 1.45086 + 5.41467i 0.0730931 + 0.272787i
$$395$$ −6.06539 9.82035i −0.305183 0.494115i
$$396$$ −2.75949 −0.138669
$$397$$ 14.1042 + 14.1042i 0.707867 + 0.707867i 0.966086 0.258219i $$-0.0831356\pi$$
−0.258219 + 0.966086i $$0.583136\pi$$
$$398$$ 14.8417 + 3.97682i 0.743948 + 0.199340i
$$399$$ 0.236950 0.236950i 0.0118624 0.0118624i
$$400$$ 4.47084 + 2.23865i 0.223542 + 0.111933i
$$401$$ 9.57043 + 9.57043i 0.477925 + 0.477925i 0.904467 0.426543i $$-0.140269\pi$$
−0.426543 + 0.904467i $$0.640269\pi$$
$$402$$ 15.0190 26.0136i 0.749079 1.29744i
$$403$$ 0.494584 0.132523i 0.0246370 0.00660146i
$$404$$ 2.27711 + 1.31469i 0.113290 + 0.0654082i
$$405$$ −22.2051 5.24870i −1.10338 0.260810i
$$406$$ 1.86513i 0.0925650i
$$407$$ 6.40442 1.80423i 0.317456 0.0894325i
$$408$$ −4.80728 4.80728i −0.237996 0.237996i
$$409$$ −26.7076 7.15628i −1.32061 0.353855i −0.471401 0.881919i $$-0.656251\pi$$
−0.849205 + 0.528064i $$0.822918\pi$$
$$410$$ −15.1153 + 4.53509i −0.746494 + 0.223972i
$$411$$ −31.9033 18.4194i −1.57367 0.908561i
$$412$$ 5.36037 + 3.09481i 0.264087 + 0.152471i
$$413$$ −3.70438 −0.182281
$$414$$ −0.853257 0.492628i −0.0419353 0.0242113i
$$415$$ 9.35860 0.277908i 0.459396 0.0136420i
$$416$$ −0.227440 0.393937i −0.0111511 0.0193143i
$$417$$ 22.1960 22.1960i 1.08694 1.08694i
$$418$$ 0.107477 0.107477i 0.00525687 0.00525687i
$$419$$ −0.732348 + 0.422822i −0.0357776 + 0.0206562i −0.517782 0.855513i $$-0.673242\pi$$
0.482005 + 0.876169i $$0.339909\pi$$
$$420$$ 5.16503 1.54967i 0.252028 0.0756164i
$$421$$ −5.01009 5.01009i −0.244177 0.244177i 0.574399 0.818576i $$-0.305236\pi$$
−0.818576 + 0.574399i $$0.805236\pi$$
$$422$$ −2.30813 3.99779i −0.112358 0.194609i
$$423$$ −6.18112 + 23.0683i −0.300537 + 1.12162i
$$424$$ −2.03337 + 7.58864i −0.0987491 + 0.368537i
$$425$$ 6.47627 12.9339i 0.314145 0.627384i
$$426$$ −4.42322 16.5077i −0.214306 0.799800i
$$427$$ 2.60580 + 4.51339i 0.126104 + 0.218418i
$$428$$ 7.39938 + 1.98266i 0.357663 + 0.0958354i
$$429$$ −0.302643 + 1.12948i −0.0146118 + 0.0545318i
$$430$$ 13.0745 13.8748i 0.630510 0.669102i
$$431$$ 15.3592 4.11547i 0.739824 0.198235i 0.130824 0.991406i $$-0.458238\pi$$
0.609000 + 0.793170i $$0.291571\pi$$
$$432$$ 0.290312 1.08346i 0.0139677 0.0521280i
$$433$$ −19.2276 19.2276i −0.924022 0.924022i 0.0732891 0.997311i $$-0.476650\pi$$
−0.997311 + 0.0732891i $$0.976650\pi$$
$$434$$ −1.15513 −0.0554478
$$435$$ −2.19702 + 9.29470i −0.105339 + 0.445647i
$$436$$ 0.396594 + 0.396594i 0.0189934 + 0.0189934i
$$437$$ 0.0524198 0.0140458i 0.00250758 0.000671903i
$$438$$ 4.66856i 0.223072i
$$439$$ 0.975860 + 3.64196i 0.0465752 + 0.173821i 0.985296 0.170859i $$-0.0546542\pi$$
−0.938720 + 0.344680i $$0.887987\pi$$
$$440$$ 2.34278 0.702908i 0.111688 0.0335098i
$$441$$ −7.50115 + 12.9924i −0.357198 + 0.618684i
$$442$$ −1.13963 + 0.657968i −0.0542068 + 0.0312963i
$$443$$ −16.0819 + 16.0819i −0.764074 + 0.764074i −0.977056 0.212982i $$-0.931682\pi$$
0.212982 + 0.977056i $$0.431682\pi$$
$$444$$ −0.182976 14.2936i −0.00868364 0.678343i
$$445$$ −0.916271 30.8556i −0.0434354 1.46270i
$$446$$ −4.88516 + 18.2317i −0.231319 + 0.863294i
$$447$$ 5.92877 1.58861i 0.280421 0.0751386i
$$448$$ 0.265598 + 0.991227i 0.0125483 + 0.0468311i
$$449$$ 3.02946 0.811742i 0.142969 0.0383085i −0.186625 0.982431i $$-0.559755\pi$$
0.329594 + 0.944123i $$0.393088\pi$$
$$450$$ −12.5913 + 0.748466i −0.593558 + 0.0352830i
$$451$$ −3.85996 + 6.68566i −0.181759 + 0.314815i
$$452$$ 4.98372i 0.234414i
$$453$$ −13.5836 + 50.6948i −0.638215 + 2.38185i
$$454$$ 10.2395i 0.480562i
$$455$$ −0.0309819 1.04332i −0.00145246 0.0489118i
$$456$$ −0.163272 0.282796i −0.00764593 0.0132431i
$$457$$ −31.9599 18.4520i −1.49502 0.863150i −0.495036 0.868872i $$-0.664845\pi$$
−0.999984 + 0.00572214i $$0.998179\pi$$
$$458$$ 0.625956i 0.0292490i
$$459$$ −3.13438 0.839855i −0.146300 0.0392011i
$$460$$ 0.849891 + 0.200891i 0.0396264 + 0.00936660i
$$461$$ −23.7875 6.37384i −1.10789 0.296859i −0.341919 0.939730i $$-0.611077\pi$$
−0.765975 + 0.642870i $$0.777743\pi$$
$$462$$ 1.31898 2.28454i 0.0613645 0.106286i
$$463$$ −0.812285 + 1.40692i −0.0377501 + 0.0653850i −0.884283 0.466951i $$-0.845352\pi$$
0.846533 + 0.532336i $$0.178686\pi$$
$$464$$ −1.75559 0.470410i −0.0815014 0.0218382i
$$465$$ 5.75645 + 1.36067i 0.266949 + 0.0630996i
$$466$$ 6.13733 + 1.64449i 0.284306 + 0.0761796i
$$467$$ 30.6174i 1.41680i 0.705810 + 0.708401i $$0.250583\pi$$
−0.705810 + 0.708401i $$0.749417\pi$$
$$468$$ 0.993783 + 0.573761i 0.0459377 + 0.0265221i
$$469$$ 6.55834 + 11.3594i 0.302836 + 0.524528i
$$470$$ −0.628332 21.1592i −0.0289828 0.976002i
$$471$$ 7.53788i 0.347327i
$$472$$ −0.934291 + 3.48682i −0.0430042 + 0.160494i
$$473$$ 9.32615i 0.428817i
$$474$$ −6.06539 + 10.5056i −0.278593 + 0.482537i
$$475$$ 0.461255 0.519558i 0.0211638 0.0238390i
$$476$$ 2.86756 0.768359i 0.131434 0.0352177i
$$477$$ −5.12958 19.1438i −0.234867 0.876536i
$$478$$ −17.0952 + 4.58065i −0.781917 + 0.209514i
$$479$$ 1.07888 4.02643i 0.0492952 0.183972i −0.936888 0.349629i $$-0.886308\pi$$
0.986183 + 0.165657i $$0.0529743\pi$$
$$480$$ −0.155976 5.25254i −0.00711932 0.239744i
$$481$$ −2.68159 0.681863i −0.122270 0.0310903i
$$482$$ −2.57289 + 2.57289i −0.117192 + 0.117192i
$$483$$ 0.815680 0.470933i 0.0371147 0.0214282i
$$484$$ −4.90173 + 8.49005i −0.222806 + 0.385911i
$$485$$ −25.4667 + 7.64084i −1.15639 + 0.346953i
$$486$$ 5.33555 + 19.9126i 0.242026 + 0.903252i
$$487$$ 8.40797i 0.381002i −0.981687 0.190501i $$-0.938989\pi$$
0.981687 0.190501i $$-0.0610112\pi$$
$$488$$ 4.90553 1.31443i 0.222063 0.0595016i
$$489$$ −33.3019 33.3019i −1.50597 1.50597i
$$490$$ 3.05893 12.9411i 0.138188 0.584620i
$$491$$ −10.8980 −0.491819 −0.245909 0.969293i $$-0.579087\pi$$
−0.245909 + 0.969293i $$0.579087\pi$$
$$492$$ 11.7276 + 11.7276i 0.528723 + 0.528723i
$$493$$ −1.36087 + 5.07882i −0.0612903 + 0.228739i
$$494$$ −0.0610530 + 0.0163591i −0.00274690 + 0.000736031i
$$495$$ −4.23170 + 4.49072i −0.190201 + 0.201843i
$$496$$ −0.291337 + 1.08729i −0.0130814 + 0.0488206i
$$497$$ 7.20842 + 1.93149i 0.323342 + 0.0866392i
$$498$$ −4.91997 8.52165i −0.220469 0.381864i
$$499$$ 3.97714 + 14.8429i 0.178041 + 0.664459i 0.996014 + 0.0892013i $$0.0284315\pi$$
−0.817972 + 0.575257i $$0.804902\pi$$
$$500$$ 10.4992 3.84274i 0.469539 0.171853i
$$501$$ −2.96851 + 11.0786i −0.132623 + 0.494957i
$$502$$ −5.79379 + 21.6227i −0.258589 + 0.965068i
$$503$$ 16.2062 + 28.0700i 0.722600 + 1.25158i 0.959954 + 0.280156i $$0.0903862\pi$$
−0.237355 + 0.971423i $$0.576280\pi$$
$$504$$ −1.83054 1.83054i −0.0815388 0.0815388i
$$505$$ 5.63146 1.68962i 0.250597 0.0751870i
$$506$$ 0.369980 0.213608i 0.0164476 0.00949603i
$$507$$ −21.2587 + 21.2587i −0.944130 + 0.944130i
$$508$$ −14.8937 + 14.8937i −0.660802 + 0.660802i
$$509$$ −16.9629 29.3806i −0.751867 1.30227i −0.946917 0.321478i $$-0.895820\pi$$
0.195050 0.980793i $$-0.437513\pi$$
$$510$$ −15.1953 + 0.451230i −0.672857 + 0.0199808i
$$511$$ 1.76550 + 1.01931i 0.0781010 + 0.0450916i
$$512$$ 1.00000 0.0441942
$$513$$ −0.134979 0.0779304i −0.00595949 0.00344071i
$$514$$ 18.9356 + 10.9325i 0.835214 + 0.482211i
$$515$$ 13.2566 3.97741i 0.584156 0.175265i
$$516$$ −19.3535 5.18575i −0.851989 0.228290i
$$517$$ −7.32242 7.32242i −0.322039 0.322039i
$$518$$ 5.44532 + 3.05160i 0.239254 + 0.134079i
$$519$$ 37.5460i 1.64809i
$$520$$ −0.989863 0.233977i −0.0434084 0.0102606i
$$521$$ 6.63535 + 3.83092i 0.290700 + 0.167836i 0.638258 0.769823i $$-0.279655\pi$$
−0.347557 + 0.937659i $$0.612989\pi$$
$$522$$ 4.42883 1.18670i 0.193845 0.0519406i
$$523$$ 6.03193 10.4476i 0.263758 0.456842i −0.703479 0.710716i $$-0.748371\pi$$
0.967237 + 0.253873i $$0.0817046\pi$$
$$524$$ 12.8933 + 12.8933i 0.563248 + 0.563248i
$$525$$ 5.39873 10.7819i 0.235620 0.470560i
$$526$$ −6.08580 + 6.08580i −0.265354 + 0.265354i
$$527$$ 3.14545 + 0.842820i 0.137018 + 0.0367138i
$$528$$ −1.81771 1.81771i −0.0791055 0.0791055i
$$529$$ −22.8475 −0.993368
$$530$$ 9.23136 + 14.9463i 0.400985 + 0.649226i
$$531$$ −2.35693 8.79620i −0.102282 0.381722i
$$532$$ 0.142592 0.00618217
$$533$$ 2.78020 1.60515i 0.120424 0.0695268i
$$534$$ −28.0962 + 16.2213i −1.21584 + 0.701965i
$$535$$ 14.5736 9.00114i 0.630070 0.389153i
$$536$$ 12.3464 3.30819i 0.533281 0.142892i
$$537$$ −25.6919 14.8332i −1.10869 0.640102i
$$538$$ 4.95945 2.86334i 0.213817 0.123447i
$$539$$ −3.25256 5.63361i −0.140098 0.242657i
$$540$$ −1.31800 2.13395i −0.0567176 0.0918304i
$$541$$ 22.7977 22.7977i 0.980151 0.980151i −0.0196559 0.999807i $$-0.506257\pi$$
0.999807 + 0.0196559i $$0.00625705\pi$$
$$542$$ 3.30228 5.71972i 0.141845 0.245683i
$$543$$ 39.4073 + 10.5591i 1.69113 + 0.453136i
$$544$$ 2.89294i 0.124034i
$$545$$ 1.25359 0.0372259i 0.0536978 0.00159458i
$$546$$ −0.950017 + 0.548493i −0.0406570 + 0.0234733i
$$547$$ 32.5413 1.39137 0.695683 0.718349i $$-0.255102\pi$$
0.695683 + 0.718349i $$0.255102\pi$$
$$548$$ −4.05719 15.1416i −0.173315 0.646819i
$$549$$ −9.05926 + 9.05926i −0.386640 + 0.386640i
$$550$$ 2.44878 4.89049i 0.104416 0.208531i
$$551$$ −0.126275 + 0.218715i −0.00537950 + 0.00931757i
$$552$$ −0.237550 0.886550i −0.0101108 0.0377341i
$$553$$ −2.64858 4.58747i −0.112629 0.195079i
$$554$$ 8.89566 0.377940
$$555$$ −23.5416 21.6216i −0.999285 0.917785i
$$556$$ 13.3571 0.566469
$$557$$ −2.04900 3.54898i −0.0868190 0.150375i 0.819346 0.573300i $$-0.194337\pi$$
−0.906165 + 0.422925i $$0.861004\pi$$
$$558$$ −0.734956 2.74289i −0.0311132 0.116116i
$$559$$ −1.93912 + 3.35866i −0.0820162 + 0.142056i
$$560$$ 2.02040 + 1.08783i 0.0853773 + 0.0459692i
$$561$$ −5.25851 + 5.25851i −0.222014 + 0.222014i
$$562$$ −0.426903 1.59322i −0.0180078 0.0672061i
$$563$$ 38.2228 1.61090 0.805449 0.592665i $$-0.201924\pi$$
0.805449 + 0.592665i $$0.201924\pi$$
$$564$$ −19.2669 + 11.1238i −0.811284 + 0.468395i
$$565$$ 8.11037 + 7.64258i 0.341206 + 0.321526i
$$566$$ 32.6198i 1.37111i
$$567$$ −10.1146 2.71019i −0.424772 0.113817i
$$568$$ 3.63611 6.29793i 0.152568 0.264255i
$$569$$ −5.18626 + 5.18626i −0.217420 + 0.217420i −0.807410 0.589991i $$-0.799131\pi$$
0.589991 + 0.807410i $$0.299131\pi$$
$$570$$ −0.710595 0.167965i −0.0297636 0.00703530i
$$571$$ 1.43605 + 2.48731i 0.0600968 + 0.104091i 0.894508 0.447051i $$-0.147526\pi$$
−0.834412 + 0.551142i $$0.814192\pi$$
$$572$$ −0.430913 + 0.248788i −0.0180174 + 0.0104023i
$$573$$ 21.3021 + 12.2988i 0.889909 + 0.513789i
$$574$$ −6.99557 + 1.87446i −0.291990 + 0.0782384i
$$575$$ 1.63024 1.07502i 0.0679858 0.0448315i
$$576$$ −2.18472 + 1.26135i −0.0910300 + 0.0525562i
$$577$$ 28.7785 16.6152i 1.19806 0.691702i 0.237940 0.971280i $$-0.423528\pi$$
0.960123 + 0.279578i $$0.0901946\pi$$
$$578$$ 8.63093 0.358999
$$579$$ 3.32980 + 12.4270i 0.138382 + 0.516448i
$$580$$ −3.45776 + 2.13563i −0.143575 + 0.0886772i
$$581$$ 4.29681 0.178262
$$582$$ 19.7591 + 19.7591i 0.819039 + 0.819039i
$$583$$ 8.30094 + 2.22423i 0.343790 + 0.0921182i
$$584$$ 1.40473 1.40473i 0.0581280 0.0581280i
$$585$$ 2.45770 0.737389i 0.101613 0.0304873i
$$586$$ 16.9720 + 16.9720i 0.701106 + 0.701106i
$$587$$ −2.92762 + 5.07079i −0.120836 + 0.209294i −0.920098 0.391689i $$-0.871891\pi$$
0.799262 + 0.600983i $$0.205224\pi$$
$$588$$ −13.4993 + 3.61713i −0.556703 + 0.149168i
$$589$$ 0.135456 + 0.0782055i 0.00558136 + 0.00322240i
$$590$$ 4.24162 + 6.86752i 0.174625 + 0.282731i
$$591$$ 13.1736i 0.541889i
$$592$$ 4.24575 4.35587i 0.174499 0.179025i
$$593$$ −6.25765 6.25765i −0.256971 0.256971i 0.566850 0.823821i $$-0.308162\pi$$
−0.823821 + 0.566850i $$0.808162\pi$$
$$594$$ −1.18516 0.317562i −0.0486277 0.0130297i
$$595$$ 3.14702 5.84487i 0.129015 0.239616i
$$596$$ 2.26191 + 1.30592i 0.0926515 + 0.0534924i
$$597$$ −31.2713 18.0545i −1.27985 0.738922i
$$598$$ −0.177656 −0.00726489
$$599$$ −10.8652 6.27302i −0.443940 0.256309i 0.261328 0.965250i $$-0.415840\pi$$
−0.705267 + 0.708941i $$0.749173\pi$$
$$600$$ −8.78704 7.80099i −0.358729 0.318474i
$$601$$ 9.26076 + 16.0401i 0.377754 + 0.654290i 0.990735 0.135808i $$-0.0433631\pi$$
−0.612981 + 0.790098i $$0.710030\pi$$
$$602$$ 6.18662 6.18662i 0.252148 0.252148i
$$603$$ −22.8005 + 22.8005i −0.928509 + 0.928509i
$$604$$ −19.3408 + 11.1664i −0.786966 + 0.454355i
$$605$$ 6.29963 + 20.9965i 0.256116 + 0.853630i
$$606$$ −4.36932 4.36932i −0.177491 0.177491i
$$607$$ 0.390284 + 0.675992i 0.0158412 + 0.0274377i 0.873837 0.486218i $$-0.161624\pi$$
−0.857996 + 0.513656i $$0.828291\pi$$
$$608$$ 0.0359636 0.134218i 0.00145852 0.00544326i
$$609$$ −1.13444 + 4.23379i −0.0459698 + 0.171562i
$$610$$ 5.38361 9.99884i 0.217976 0.404841i
$$611$$ 1.11455 + 4.15955i 0.0450897 + 0.168277i
$$612$$ 3.64900 + 6.32025i 0.147502 + 0.255481i
$$613$$ −20.8106 5.57619i −0.840533 0.225220i −0.187229 0.982316i $$-0.559951\pi$$
−0.653304 + 0.757096i $$0.726617\pi$$
$$614$$ −5.22247 + 19.4905i −0.210762 + 0.786574i
$$615$$ 37.0697 1.10080i 1.49480 0.0443886i
$$616$$ 1.08427 0.290529i 0.0436864 0.0117057i
$$617$$ 6.21897 23.2095i 0.250366 0.934380i −0.720243 0.693722i $$-0.755970\pi$$
0.970610 0.240659i $$-0.0773635\pi$$
$$618$$ −10.2855 10.2855i −0.413743 0.413743i
$$619$$ 6.63573 0.266713 0.133356 0.991068i $$-0.457425\pi$$
0.133356 + 0.991068i $$0.457425\pi$$
$$620$$ 1.32265 + 2.14148i 0.0531190 + 0.0860039i
$$621$$ −0.309769 0.309769i −0.0124306 0.0124306i
$$622$$ −7.34201 + 1.96729i −0.294388 + 0.0788810i
$$623$$ 14.1667i 0.567579i
$$624$$ 0.276674 + 1.03256i 0.0110758 + 0.0413355i
$$625$$ 9.84707 22.9790i 0.393883 0.919161i
$$626$$ −16.2812 + 28.1999i −0.650729 + 1.12710i
$$627$$ −0.309341 + 0.178598i −0.0123539 + 0.00713251i
$$628$$ −2.26808 + 2.26808i −0.0905063 + 0.0905063i
$$629$$ −12.6012 12.2827i −0.502444 0.489743i
$$630$$ −5.78613 + 0.171822i −0.230525 + 0.00684554i
$$631$$ −2.82761 + 10.5528i −0.112565 + 0.420100i −0.999093 0.0425753i $$-0.986444\pi$$
0.886528 + 0.462675i $$0.153110\pi$$
$$632$$ −4.98605 + 1.33601i −0.198335 + 0.0531436i
$$633$$ 2.80777 + 10.4787i 0.111599 + 0.416492i
$$634$$ −25.2620 + 6.76893i −1.00328 + 0.268828i
$$635$$ 1.39798 + 47.0773i 0.0554772 + 1.86821i
$$636$$ 9.23136 15.9892i 0.366047 0.634012i
$$637$$ 2.70513i 0.107181i
$$638$$ −0.514565 + 1.92038i −0.0203718 + 0.0760286i
$$639$$ 18.3456i 0.725741i
$$640$$ 1.53351 1.62737i 0.0606173 0.0643276i
$$641$$ 21.2426 + 36.7932i 0.839031 + 1.45324i 0.890706 + 0.454580i $$0.150211\pi$$
−0.0516750 + 0.998664i $$0.516456\pi$$
$$642$$ −15.5904 9.00114i −0.615305 0.355246i
$$643$$ 18.2603i 0.720117i 0.932930 + 0.360058i $$0.117243\pi$$
−0.932930 + 0.360058i $$0.882757\pi$$
$$644$$ 0.387130 + 0.103731i 0.0152551 + 0.00408758i
$$645$$ −38.1179 + 23.5429i −1.50089 + 0.927002i
$$646$$ −0.388284 0.104040i −0.0152768 0.00409342i
$$647$$ 6.92548 11.9953i 0.272269 0.471583i −0.697174 0.716902i $$-0.745559\pi$$
0.969442 + 0.245319i $$0.0788927\pi$$
$$648$$ −5.10205 + 8.83700i −0.200427 + 0.347150i
$$649$$ 3.81411 + 1.02199i 0.149717 + 0.0401165i
$$650$$ −1.89873 + 1.25207i −0.0744745 + 0.0491103i
$$651$$ 2.62210 + 0.702589i 0.102768 + 0.0275366i
$$652$$ 20.0405i 0.784847i
$$653$$ −1.44486 0.834191i −0.0565418 0.0326444i 0.471463 0.881886i $$-0.343726\pi$$
−0.528004 + 0.849242i $$0.677060\pi$$
$$654$$ −0.659033 1.14148i −0.0257702 0.0446353i
$$655$$ 40.7544 1.21022i 1.59241 0.0472872i
$$656$$ 7.05749i 0.275549i
$$657$$ −1.29708 + 4.84079i −0.0506041 + 0.188857i
$$658$$ 9.71484i 0.378724i
$$659$$ −4.01747 + 6.95846i −0.156498 + 0.271063i −0.933604 0.358307i $$-0.883354\pi$$
0.777105 + 0.629371i $$0.216687\pi$$
$$660$$ −5.74556 + 0.170617i −0.223646 + 0.00664126i
$$661$$ −27.5450 + 7.38067i −1.07138 + 0.287075i −0.751059 0.660235i $$-0.770457\pi$$
−0.320319 + 0.947310i $$0.603790\pi$$
$$662$$ 4.54843 + 16.9750i 0.176780 + 0.659751i
$$663$$ 2.98713 0.800399i 0.116010 0.0310849i
$$664$$ 1.08371 4.04446i 0.0420561 0.156956i
$$665$$ 0.218667 0.232051i 0.00847954 0.00899856i
$$666$$ −3.78152 + 14.8717i −0.146531 + 0.576268i
$$667$$ −0.501937 + 0.501937i −0.0194351 + 0.0194351i
$$668$$ −4.22666 + 2.44027i −0.163535 + 0.0944167i
$$669$$ 22.1783 38.4139i 0.857463 1.48517i
$$670$$ 13.5496 25.1653i 0.523466 0.972220i
$$671$$ −1.43781 5.36599i −0.0555061 0.207152i
$$672$$ 2.41160i 0.0930294i
$$673$$ 42.8128 11.4717i 1.65031 0.442200i 0.690613 0.723224i $$-0.257341\pi$$
0.959701 + 0.281024i $$0.0906740\pi$$
$$674$$ 15.5402 + 15.5402i 0.598586 + 0.598586i
$$675$$ −5.49389 1.12755i −0.211460 0.0433994i
$$676$$ −12.7931 −0.492042
$$677$$ 36.0280 + 36.0280i 1.38467 + 1.38467i 0.836118 + 0.548549i $$0.184820\pi$$
0.548549 + 0.836118i $$0.315180\pi$$
$$678$$ 3.03127 11.3129i 0.116415 0.434468i
$$679$$ −11.7863 + 3.15814i −0.452318 + 0.121198i
$$680$$ −4.70789 4.43635i −0.180539 0.170126i
$$681$$ 6.22800 23.2432i 0.238658 0.890682i
$$682$$ 1.18934 + 0.318684i 0.0455423 + 0.0122030i
$$683$$ −20.5569 35.6056i −0.786588 1.36241i −0.928046 0.372467i $$-0.878512\pi$$
0.141457 0.989944i $$-0.454821\pi$$
$$684$$ 0.0907254 + 0.338592i 0.00346897 + 0.0129464i
$$685$$ −30.8629 16.6173i −1.17921 0.634914i
$$686$$ 3.43868 12.8333i 0.131290 0.489979i
$$687$$ −0.380729 + 1.42090i −0.0145257 + 0.0542106i
$$688$$ −4.26294 7.38363i −0.162523 0.281498i
$$689$$ −2.52698 2.52698i −0.0962701 0.0962701i
$$690$$ −1.80703 0.972951i −0.0687926 0.0370396i
$$691$$ 28.4645 16.4340i 1.08284 0.625179i 0.151181 0.988506i $$-0.451693\pi$$
0.931662 + 0.363327i $$0.118359\pi$$
$$692$$ −11.2972 + 11.2972i −0.429457 + 0.429457i
$$693$$ −2.00236 + 2.00236i −0.0760635 + 0.0760635i
$$694$$ −6.16936 10.6856i −0.234186 0.405622i
$$695$$ 20.4833 21.7371i 0.776976 0.824533i
$$696$$ 3.69902 + 2.13563i 0.140211 + 0.0809509i
$$697$$ 20.4169 0.773343
$$698$$ −19.7732 11.4160i −0.748425 0.432104i
$$699$$ −12.9313 7.46588i −0.489106 0.282386i
$$700$$ 4.86860 1.61974i 0.184016 0.0612205i
$$701$$ −43.3904 11.6264i −1.63883 0.439124i −0.682376 0.731001i $$-0.739053\pi$$
−0.956456 + 0.291878i $$0.905720\pi$$
$$702$$ 0.360787 + 0.360787i 0.0136170 + 0.0136170i
$$703$$ −0.431943 0.726510i −0.0162911 0.0274008i
$$704$$ 1.09386i 0.0412265i
$$705$$ −11.4435 + 48.4129i −0.430987 + 1.82334i
$$706$$ 14.7854 + 8.53634i 0.556455 + 0.321269i
$$707$$ 2.60631 0.698358i 0.0980203 0.0262645i
$$708$$ 4.24162 7.34670i 0.159410 0.276106i
$$709$$ 1.37574 + 1.37574i 0.0516669 + 0.0516669i 0.732468 0.680801i $$-0.238368\pi$$
−0.680801 + 0.732468i $$0.738368\pi$$
$$710$$ −4.67307 15.5752i −0.175377 0.584529i
$$711$$ 9.20796 9.20796i 0.345325 0.345325i
$$712$$ −13.3347 3.57303i −0.499741 0.133905i
$$713$$ 0.310863 + 0.310863i 0.0116419 + 0.0116419i
$$714$$ −6.97660 −0.261093
$$715$$ −0.255939 + 1.08278i −0.00957157 + 0.0404935i
$$716$$ −3.26728 12.1937i −0.122104 0.455699i
$$717$$ 41.5917 1.55327
$$718$$ 17.6647 10.1987i 0.659243 0.380614i
$$719$$ 32.0917 18.5282i 1.19682 0.690984i 0.236975 0.971516i $$-0.423844\pi$$
0.959845 + 0.280532i $$0.0905107\pi$$
$$720$$ −1.29760 + 5.48965i −0.0483589 + 0.204587i
$$721$$ 6.13533 1.64396i 0.228491 0.0612241i
$$722$$ 16.4378 + 9.49035i 0.611750 + 0.353194i
$$723$$ 7.40531 4.27546i 0.275406 0.159006i
$$724$$ 8.68014 + 15.0344i 0.322595 + 0.558751i
$$725$$ −1.82703 + 8.90207i −0.0678543 + 0.330615i
$$726$$ 16.2907 16.2907i 0.604605 0.604605i
$$727$$ −4.06077 + 7.03346i −0.150606 + 0.260856i −0.931450 0.363869i $$-0.881456\pi$$
0.780845 + 0.624725i $$0.214789\pi$$
$$728$$ −0.450888 0.120815i −0.0167110 0.00447771i
$$729$$ 17.8338i 0.660512i
$$730$$ −0.131853 4.44018i −0.00488010 0.164338i
$$731$$ −21.3604 + 12.3324i −0.790042 + 0.456131i
$$732$$ −11.9349 −0.441126
$$733$$ −12.9773 48.4318i −0.479326 1.78887i −0.604353 0.796717i $$-0.706568\pi$$
0.125027 0.992153i $$-0.460098\pi$$
$$734$$ 9.43149 9.43149i 0.348122 0.348122i
$$735$$ −14.8149 + 27.5154i −0.546457 + 1.01492i
$$736$$ 0.195278 0.338232i 0.00719805 0.0124674i
$$737$$ −3.61871 13.5052i −0.133297 0.497471i
$$738$$ −8.90195 15.4186i −0.327685 0.567568i
$$739$$ 12.7958 0.470701 0.235351 0.971911i $$-0.424376\pi$$
0.235351 + 0.971911i $$0.424376\pi$$
$$740$$ −0.577715 13.5892i −0.0212372 0.499549i
$$741$$ 0.148538 0.00545670
$$742$$ 4.03106 + 6.98200i 0.147985 + 0.256317i
$$743$$ 12.4148 + 46.3327i 0.455455 + 1.69978i 0.686746 + 0.726897i $$0.259038\pi$$
−0.231291 + 0.972885i $$0.574295\pi$$
$$744$$ 1.32265 2.29090i 0.0484908 0.0839885i
$$745$$ 5.59388 1.67834i 0.204944 0.0614897i
$$746$$ −12.3383 + 12.3383i −0.451737 + 0.451737i
$$747$$ 2.73387 + 10.2030i 0.100027 + 0.373307i
$$748$$ −3.16448 −0.115705
$$749$$ 6.80788 3.93053i 0.248754 0.143618i
$$750$$ −26.1701 + 2.33690i −0.955598 + 0.0853314i
$$751$$ 8.75628i 0.319521i −0.987156 0.159761i $$-0.948928\pi$$
0.987156 0.159761i $$-0.0510722\pi$$
$$752$$ −9.14429 2.45020i −0.333458 0.0893498i
$$753$$ 26.3034 45.5588i 0.958549 1.66026i
$$754$$ 0.584603 0.584603i 0.0212900 0.0212900i
$$755$$ −11.4874 + 48.5986i −0.418069 + 1.76868i
$$756$$ −0.575531 0.996849i −0.0209319 0.0362551i
$$757$$ −42.8500 + 24.7395i −1.55741 + 0.899172i −0.559908 + 0.828555i $$0.689163\pi$$
−0.997504 + 0.0706169i $$0.977503\pi$$
$$758$$ −21.7843 12.5772i −0.791240 0.456823i
$$759$$ −0.969765 + 0.259848i −0.0352003 + 0.00943188i
$$760$$ −0.163272 0.264351i −0.00592251 0.00958902i
$$761$$ 3.14495 1.81574i 0.114004 0.0658204i −0.441914 0.897058i $$-0.645700\pi$$
0.555918 + 0.831237i $$0.312367\pi$$
$$762$$ 42.8672 24.7494i 1.55291 0.896575i
$$763$$ 0.575560 0.0208367
$$764$$ 2.70902 + 10.1102i 0.0980090 + 0.365775i
$$765$$ 15.8812 + 3.75389i 0.574186 + 0.135722i
$$766$$ 10.7373 0.387953
$$767$$ −1.16109 1.16109i −0.0419246 0.0419246i
$$768$$ −2.26997 0.608236i −0.0819104 0.0219478i
$$769$$