Properties

Label 370.2.q.c.267.1
Level $370$
Weight $2$
Character 370.267
Analytic conductor $2.954$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(97,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.q (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 267.1
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 370.267
Dual form 370.2.q.c.273.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.465926 + 0.124844i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.03906 + 0.917738i) q^{5} +(-0.341081 - 0.341081i) q^{6} +(4.19798 - 1.12484i) q^{7} -1.00000 q^{8} +(-2.39658 + 1.38366i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.465926 + 0.124844i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.03906 + 0.917738i) q^{5} +(-0.341081 - 0.341081i) q^{6} +(4.19798 - 1.12484i) q^{7} -1.00000 q^{8} +(-2.39658 + 1.38366i) q^{9} +(-1.81431 - 1.30701i) q^{10} +3.56048i q^{11} +(0.124844 - 0.465926i) q^{12} +(-2.59077 + 4.48735i) q^{13} +(3.07313 + 3.07313i) q^{14} +(0.835475 - 0.682163i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.739357 + 0.426868i) q^{17} +(-2.39658 - 1.38366i) q^{18} +(0.530550 + 1.98004i) q^{19} +(0.224745 - 2.22474i) q^{20} +(-1.81552 + 1.04819i) q^{21} +(-3.08346 + 1.78024i) q^{22} -5.38134 q^{23} +(0.465926 - 0.124844i) q^{24} +(3.31552 - 3.74264i) q^{25} -5.18154 q^{26} +(1.96713 - 1.96713i) q^{27} +(-1.12484 + 4.19798i) q^{28} +(-2.49269 - 2.49269i) q^{29} +(1.00851 + 0.382461i) q^{30} +(3.87832 - 3.87832i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.444506 - 1.65892i) q^{33} +(-0.739357 - 0.426868i) q^{34} +(-7.52761 + 6.14626i) q^{35} -2.76733i q^{36} +(-2.05197 + 5.72620i) q^{37} +(-1.44949 + 1.44949i) q^{38} +(0.646887 - 2.41421i) q^{39} +(2.03906 - 0.917738i) q^{40} +(3.80046 + 2.19419i) q^{41} +(-1.81552 - 1.04819i) q^{42} +10.1633 q^{43} +(-3.08346 - 1.78024i) q^{44} +(3.61692 - 5.02080i) q^{45} +(-2.69067 - 4.66038i) q^{46} +(6.14867 + 6.14867i) q^{47} +(0.341081 + 0.341081i) q^{48} +(10.2956 - 5.94414i) q^{49} +(4.89898 + 1.00000i) q^{50} +(0.291193 - 0.291193i) q^{51} +(-2.59077 - 4.48735i) q^{52} +(12.8737 + 3.44949i) q^{53} +(2.68715 + 0.720019i) q^{54} +(-3.26758 - 7.26002i) q^{55} +(-4.19798 + 1.12484i) q^{56} +(-0.494394 - 0.856315i) q^{57} +(0.912389 - 3.40508i) q^{58} +(-6.39595 - 1.71379i) q^{59} +(0.173033 + 1.06462i) q^{60} +(-2.12957 - 7.94767i) q^{61} +(5.29788 + 1.41956i) q^{62} +(-8.50436 + 8.50436i) q^{63} +1.00000 q^{64} +(1.16452 - 11.5276i) q^{65} +(1.21441 - 1.21441i) q^{66} +(1.47443 + 5.50266i) q^{67} -0.853736i q^{68} +(2.50731 - 0.671831i) q^{69} +(-9.08662 - 3.44597i) q^{70} +(-0.748487 + 1.29642i) q^{71} +(2.39658 - 1.38366i) q^{72} +(3.61401 + 3.61401i) q^{73} +(-5.98502 + 1.08604i) q^{74} +(-1.07754 + 2.15772i) q^{75} +(-1.98004 - 0.530550i) q^{76} +(4.00498 + 14.9468i) q^{77} +(2.41421 - 0.646887i) q^{78} +(-0.864068 - 3.22474i) q^{79} +(1.81431 + 1.30701i) q^{80} +(3.48004 - 6.02761i) q^{81} +4.38839i q^{82} +(-15.3446 - 4.11157i) q^{83} -2.09638i q^{84} +(1.11584 - 1.54894i) q^{85} +(5.08164 + 8.80166i) q^{86} +(1.47261 + 0.850212i) q^{87} -3.56048i q^{88} +(2.96240 - 11.0558i) q^{89} +(6.15660 + 0.621943i) q^{90} +(-5.82843 + 21.7520i) q^{91} +(2.69067 - 4.66038i) q^{92} +(-1.32282 + 2.29119i) q^{93} +(-2.25057 + 8.39924i) q^{94} +(-2.89898 - 3.55051i) q^{95} +(-0.124844 + 0.465926i) q^{96} -8.46926i q^{97} +(10.2956 + 5.94414i) q^{98} +(-4.92650 - 8.53295i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 4 q^{5} - 4 q^{6} + 12 q^{7} - 8 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 4 q^{5} - 4 q^{6} + 12 q^{7} - 8 q^{8} - 12 q^{9} - 4 q^{10} - 8 q^{12} - 4 q^{13} + 12 q^{14} - 4 q^{16} + 12 q^{17} - 12 q^{18} + 4 q^{19} - 8 q^{20} + 12 q^{21} - 12 q^{22} - 8 q^{23} - 4 q^{24} - 8 q^{26} - 8 q^{27} - 24 q^{29} - 12 q^{30} - 8 q^{31} + 4 q^{32} - 12 q^{33} + 12 q^{34} + 8 q^{38} + 16 q^{39} - 4 q^{40} + 12 q^{41} + 12 q^{42} + 16 q^{43} - 12 q^{44} - 12 q^{45} - 4 q^{46} - 8 q^{47} + 4 q^{48} + 36 q^{49} + 20 q^{51} - 4 q^{52} + 16 q^{53} - 4 q^{54} + 16 q^{55} - 12 q^{56} + 4 q^{57} - 24 q^{58} - 8 q^{59} - 12 q^{60} + 20 q^{62} - 4 q^{63} + 8 q^{64} + 16 q^{65} - 16 q^{67} + 16 q^{69} - 12 q^{70} - 4 q^{71} + 12 q^{72} + 16 q^{73} - 20 q^{75} + 4 q^{76} + 4 q^{77} + 8 q^{78} - 32 q^{79} + 4 q^{80} + 8 q^{81} + 16 q^{85} + 8 q^{86} - 36 q^{87} + 8 q^{89} + 24 q^{90} - 24 q^{91} + 4 q^{92} + 20 q^{93} - 16 q^{94} + 16 q^{95} + 8 q^{96} + 36 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.465926 + 0.124844i −0.269002 + 0.0720790i −0.390799 0.920476i \(-0.627801\pi\)
0.121796 + 0.992555i \(0.461135\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −2.03906 + 0.917738i −0.911894 + 0.410425i
\(6\) −0.341081 0.341081i −0.139246 0.139246i
\(7\) 4.19798 1.12484i 1.58669 0.425151i 0.645698 0.763592i \(-0.276566\pi\)
0.940988 + 0.338441i \(0.109900\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.39658 + 1.38366i −0.798858 + 0.461221i
\(10\) −1.81431 1.30701i −0.573736 0.413312i
\(11\) 3.56048i 1.07352i 0.843734 + 0.536762i \(0.180353\pi\)
−0.843734 + 0.536762i \(0.819647\pi\)
\(12\) 0.124844 0.465926i 0.0360395 0.134501i
\(13\) −2.59077 + 4.48735i −0.718550 + 1.24457i 0.243024 + 0.970020i \(0.421861\pi\)
−0.961574 + 0.274545i \(0.911473\pi\)
\(14\) 3.07313 + 3.07313i 0.821329 + 0.821329i
\(15\) 0.835475 0.682163i 0.215719 0.176134i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.739357 + 0.426868i −0.179320 + 0.103531i −0.586973 0.809606i \(-0.699681\pi\)
0.407653 + 0.913137i \(0.366347\pi\)
\(18\) −2.39658 1.38366i −0.564878 0.326133i
\(19\) 0.530550 + 1.98004i 0.121717 + 0.454252i 0.999701 0.0244361i \(-0.00777903\pi\)
−0.877985 + 0.478688i \(0.841112\pi\)
\(20\) 0.224745 2.22474i 0.0502545 0.497468i
\(21\) −1.81552 + 1.04819i −0.396178 + 0.228733i
\(22\) −3.08346 + 1.78024i −0.657397 + 0.379548i
\(23\) −5.38134 −1.12209 −0.561044 0.827786i \(-0.689600\pi\)
−0.561044 + 0.827786i \(0.689600\pi\)
\(24\) 0.465926 0.124844i 0.0951067 0.0254838i
\(25\) 3.31552 3.74264i 0.663103 0.748528i
\(26\) −5.18154 −1.01618
\(27\) 1.96713 1.96713i 0.378574 0.378574i
\(28\) −1.12484 + 4.19798i −0.212576 + 0.793343i
\(29\) −2.49269 2.49269i −0.462882 0.462882i 0.436717 0.899599i \(-0.356141\pi\)
−0.899599 + 0.436717i \(0.856141\pi\)
\(30\) 1.00851 + 0.382461i 0.184128 + 0.0698276i
\(31\) 3.87832 3.87832i 0.696566 0.696566i −0.267102 0.963668i \(-0.586066\pi\)
0.963668 + 0.267102i \(0.0860661\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −0.444506 1.65892i −0.0773785 0.288781i
\(34\) −0.739357 0.426868i −0.126799 0.0732072i
\(35\) −7.52761 + 6.14626i −1.27240 + 1.03891i
\(36\) 2.76733i 0.461221i
\(37\) −2.05197 + 5.72620i −0.337342 + 0.941382i
\(38\) −1.44949 + 1.44949i −0.235138 + 0.235138i
\(39\) 0.646887 2.41421i 0.103585 0.386584i
\(40\) 2.03906 0.917738i 0.322403 0.145107i
\(41\) 3.80046 + 2.19419i 0.593532 + 0.342676i 0.766493 0.642253i \(-0.222000\pi\)
−0.172961 + 0.984929i \(0.555333\pi\)
\(42\) −1.81552 1.04819i −0.280140 0.161739i
\(43\) 10.1633 1.54989 0.774943 0.632031i \(-0.217779\pi\)
0.774943 + 0.632031i \(0.217779\pi\)
\(44\) −3.08346 1.78024i −0.464850 0.268381i
\(45\) 3.61692 5.02080i 0.539178 0.748456i
\(46\) −2.69067 4.66038i −0.396718 0.687135i
\(47\) 6.14867 + 6.14867i 0.896875 + 0.896875i 0.995159 0.0982830i \(-0.0313350\pi\)
−0.0982830 + 0.995159i \(0.531335\pi\)
\(48\) 0.341081 + 0.341081i 0.0492309 + 0.0492309i
\(49\) 10.2956 5.94414i 1.47079 0.849163i
\(50\) 4.89898 + 1.00000i 0.692820 + 0.141421i
\(51\) 0.291193 0.291193i 0.0407752 0.0407752i
\(52\) −2.59077 4.48735i −0.359275 0.622283i
\(53\) 12.8737 + 3.44949i 1.76833 + 0.473824i 0.988379 0.152011i \(-0.0485748\pi\)
0.779956 + 0.625835i \(0.215241\pi\)
\(54\) 2.68715 + 0.720019i 0.365674 + 0.0979821i
\(55\) −3.26758 7.26002i −0.440601 0.978941i
\(56\) −4.19798 + 1.12484i −0.560978 + 0.150314i
\(57\) −0.494394 0.856315i −0.0654841 0.113422i
\(58\) 0.912389 3.40508i 0.119803 0.447109i
\(59\) −6.39595 1.71379i −0.832682 0.223117i −0.182799 0.983150i \(-0.558516\pi\)
−0.649883 + 0.760034i \(0.725182\pi\)
\(60\) 0.173033 + 1.06462i 0.0223384 + 0.137442i
\(61\) −2.12957 7.94767i −0.272664 1.01759i −0.957391 0.288795i \(-0.906745\pi\)
0.684727 0.728799i \(-0.259921\pi\)
\(62\) 5.29788 + 1.41956i 0.672831 + 0.180285i
\(63\) −8.50436 + 8.50436i −1.07145 + 1.07145i
\(64\) 1.00000 0.125000
\(65\) 1.16452 11.5276i 0.144442 1.42982i
\(66\) 1.21441 1.21441i 0.149484 0.149484i
\(67\) 1.47443 + 5.50266i 0.180131 + 0.672257i 0.995621 + 0.0934858i \(0.0298010\pi\)
−0.815490 + 0.578771i \(0.803532\pi\)
\(68\) 0.853736i 0.103531i
\(69\) 2.50731 0.671831i 0.301844 0.0808789i
\(70\) −9.08662 3.44597i −1.08606 0.411872i
\(71\) −0.748487 + 1.29642i −0.0888291 + 0.153856i −0.907016 0.421095i \(-0.861646\pi\)
0.818187 + 0.574952i \(0.194979\pi\)
\(72\) 2.39658 1.38366i 0.282439 0.163066i
\(73\) 3.61401 + 3.61401i 0.422988 + 0.422988i 0.886231 0.463243i \(-0.153314\pi\)
−0.463243 + 0.886231i \(0.653314\pi\)
\(74\) −5.98502 + 1.08604i −0.695745 + 0.126250i
\(75\) −1.07754 + 2.15772i −0.124423 + 0.249152i
\(76\) −1.98004 0.530550i −0.227126 0.0608583i
\(77\) 4.00498 + 14.9468i 0.456410 + 1.70335i
\(78\) 2.41421 0.646887i 0.273356 0.0732455i
\(79\) −0.864068 3.22474i −0.0972152 0.362812i 0.900131 0.435620i \(-0.143471\pi\)
−0.997346 + 0.0728076i \(0.976804\pi\)
\(80\) 1.81431 + 1.30701i 0.202846 + 0.146128i
\(81\) 3.48004 6.02761i 0.386671 0.669734i
\(82\) 4.38839i 0.484617i
\(83\) −15.3446 4.11157i −1.68429 0.451303i −0.715381 0.698734i \(-0.753747\pi\)
−0.968905 + 0.247431i \(0.920414\pi\)
\(84\) 2.09638i 0.228733i
\(85\) 1.11584 1.54894i 0.121030 0.168007i
\(86\) 5.08164 + 8.80166i 0.547967 + 0.949107i
\(87\) 1.47261 + 0.850212i 0.157880 + 0.0911522i
\(88\) 3.56048i 0.379548i
\(89\) 2.96240 11.0558i 0.314014 1.17192i −0.610890 0.791715i \(-0.709188\pi\)
0.924904 0.380201i \(-0.124145\pi\)
\(90\) 6.15660 + 0.621943i 0.648962 + 0.0655585i
\(91\) −5.82843 + 21.7520i −0.610985 + 2.28023i
\(92\) 2.69067 4.66038i 0.280522 0.485878i
\(93\) −1.32282 + 2.29119i −0.137170 + 0.237586i
\(94\) −2.25057 + 8.39924i −0.232128 + 0.866315i
\(95\) −2.89898 3.55051i −0.297429 0.364275i
\(96\) −0.124844 + 0.465926i −0.0127419 + 0.0475534i
\(97\) 8.46926i 0.859923i −0.902847 0.429962i \(-0.858527\pi\)
0.902847 0.429962i \(-0.141473\pi\)
\(98\) 10.2956 + 5.94414i 1.04001 + 0.600449i
\(99\) −4.92650 8.53295i −0.495132 0.857594i
\(100\) 1.58346 + 4.74264i 0.158346 + 0.474264i
\(101\) 11.0635i 1.10086i −0.834881 0.550430i \(-0.814464\pi\)
0.834881 0.550430i \(-0.185536\pi\)
\(102\) 0.397777 + 0.106584i 0.0393858 + 0.0105534i
\(103\) 3.34555i 0.329647i −0.986323 0.164823i \(-0.947295\pi\)
0.986323 0.164823i \(-0.0527054\pi\)
\(104\) 2.59077 4.48735i 0.254046 0.440020i
\(105\) 2.73998 3.80348i 0.267395 0.371182i
\(106\) 3.44949 + 12.8737i 0.335044 + 1.25040i
\(107\) 5.38280 1.44232i 0.520375 0.139434i 0.0109350 0.999940i \(-0.496519\pi\)
0.509440 + 0.860506i \(0.329853\pi\)
\(108\) 0.720019 + 2.68715i 0.0692838 + 0.258571i
\(109\) 11.3316 + 3.03629i 1.08537 + 0.290824i 0.756794 0.653654i \(-0.226765\pi\)
0.328576 + 0.944478i \(0.393431\pi\)
\(110\) 4.65357 6.45982i 0.443701 0.615920i
\(111\) 0.241181 2.92416i 0.0228919 0.277549i
\(112\) −3.07313 3.07313i −0.290384 0.290384i
\(113\) −5.91928 + 3.41750i −0.556839 + 0.321491i −0.751876 0.659305i \(-0.770851\pi\)
0.195037 + 0.980796i \(0.437517\pi\)
\(114\) 0.494394 0.856315i 0.0463042 0.0802013i
\(115\) 10.9729 4.93866i 1.02323 0.460532i
\(116\) 3.40508 0.912389i 0.316154 0.0847132i
\(117\) 14.3390i 1.32564i
\(118\) −1.71379 6.39595i −0.157767 0.588795i
\(119\) −2.62364 + 2.62364i −0.240509 + 0.240509i
\(120\) −0.835475 + 0.682163i −0.0762681 + 0.0622727i
\(121\) −1.67700 −0.152455
\(122\) 5.81809 5.81809i 0.526746 0.526746i
\(123\) −2.04466 0.547866i −0.184361 0.0493994i
\(124\) 1.41956 + 5.29788i 0.127480 + 0.475763i
\(125\) −3.32577 + 10.6742i −0.297465 + 0.954733i
\(126\) −11.6172 3.11281i −1.03494 0.277311i
\(127\) −3.83453 + 14.3107i −0.340260 + 1.26987i 0.557794 + 0.829980i \(0.311648\pi\)
−0.898053 + 0.439887i \(0.855019\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −4.73533 + 1.26883i −0.416923 + 0.111714i
\(130\) 10.5655 4.75529i 0.926652 0.417067i
\(131\) 12.9799 + 3.47796i 1.13406 + 0.303871i 0.776561 0.630043i \(-0.216963\pi\)
0.357500 + 0.933913i \(0.383629\pi\)
\(132\) 1.65892 + 0.444506i 0.144390 + 0.0386893i
\(133\) 4.45447 + 7.71537i 0.386252 + 0.669008i
\(134\) −4.02823 + 4.02823i −0.347986 + 0.347986i
\(135\) −2.20578 + 5.81640i −0.189843 + 0.500596i
\(136\) 0.739357 0.426868i 0.0633993 0.0366036i
\(137\) 6.06937 + 6.06937i 0.518541 + 0.518541i 0.917130 0.398589i \(-0.130500\pi\)
−0.398589 + 0.917130i \(0.630500\pi\)
\(138\) 1.83548 + 1.83548i 0.156246 + 0.156246i
\(139\) 0.889767 + 1.54112i 0.0754691 + 0.130716i 0.901290 0.433216i \(-0.142621\pi\)
−0.825821 + 0.563932i \(0.809288\pi\)
\(140\) −1.55902 9.59223i −0.131761 0.810691i
\(141\) −3.63245 2.09720i −0.305908 0.176616i
\(142\) −1.49697 −0.125623
\(143\) −15.9771 9.22438i −1.33607 0.771381i
\(144\) 2.39658 + 1.38366i 0.199715 + 0.115305i
\(145\) 7.37039 + 2.79511i 0.612077 + 0.232121i
\(146\) −1.32282 + 4.93684i −0.109477 + 0.408575i
\(147\) −4.05487 + 4.05487i −0.334440 + 0.334440i
\(148\) −3.93305 4.64016i −0.323295 0.381419i
\(149\) 1.80552i 0.147914i −0.997261 0.0739571i \(-0.976437\pi\)
0.997261 0.0739571i \(-0.0235628\pi\)
\(150\) −2.40741 + 0.145685i −0.196564 + 0.0118951i
\(151\) −8.66636 5.00352i −0.705258 0.407181i 0.104045 0.994573i \(-0.466822\pi\)
−0.809303 + 0.587392i \(0.800155\pi\)
\(152\) −0.530550 1.98004i −0.0430333 0.160602i
\(153\) 1.18128 2.04604i 0.0955011 0.165413i
\(154\) −10.9418 + 10.9418i −0.881717 + 0.881717i
\(155\) −4.34883 + 11.4674i −0.349307 + 0.921083i
\(156\) 1.76733 + 1.76733i 0.141499 + 0.141499i
\(157\) 0.379259 1.41542i 0.0302682 0.112962i −0.949139 0.314857i \(-0.898043\pi\)
0.979407 + 0.201895i \(0.0647100\pi\)
\(158\) 2.36068 2.36068i 0.187805 0.187805i
\(159\) −6.42883 −0.509839
\(160\) −0.224745 + 2.22474i −0.0177676 + 0.175882i
\(161\) −22.5907 + 6.05317i −1.78040 + 0.477057i
\(162\) 6.96008 0.546835
\(163\) −20.6628 + 11.9297i −1.61843 + 0.934403i −0.631109 + 0.775694i \(0.717400\pi\)
−0.987325 + 0.158709i \(0.949267\pi\)
\(164\) −3.80046 + 2.19419i −0.296766 + 0.171338i
\(165\) 2.42883 + 2.97469i 0.189084 + 0.231579i
\(166\) −4.11157 15.3446i −0.319120 1.19097i
\(167\) −6.14162 3.54587i −0.475253 0.274387i 0.243183 0.969980i \(-0.421808\pi\)
−0.718436 + 0.695593i \(0.755142\pi\)
\(168\) 1.81552 1.04819i 0.140070 0.0808695i
\(169\) −6.92418 11.9930i −0.532629 0.922541i
\(170\) 1.89934 + 0.191873i 0.145673 + 0.0147160i
\(171\) −4.01121 4.01121i −0.306745 0.306745i
\(172\) −5.08164 + 8.80166i −0.387471 + 0.671120i
\(173\) 0.223178 0.832913i 0.0169679 0.0633252i −0.956923 0.290343i \(-0.906231\pi\)
0.973891 + 0.227017i \(0.0728974\pi\)
\(174\) 1.70042i 0.128909i
\(175\) 9.70857 19.4410i 0.733899 1.46960i
\(176\) 3.08346 1.78024i 0.232425 0.134191i
\(177\) 3.19400 0.240076
\(178\) 11.0558 2.96240i 0.828670 0.222041i
\(179\) 10.3495 + 10.3495i 0.773555 + 0.773555i 0.978726 0.205171i \(-0.0657750\pi\)
−0.205171 + 0.978726i \(0.565775\pi\)
\(180\) 2.53968 + 5.64274i 0.189297 + 0.420585i
\(181\) −6.72122 + 11.6415i −0.499584 + 0.865306i −1.00000 0.000479821i \(-0.999847\pi\)
0.500415 + 0.865785i \(0.333181\pi\)
\(182\) −21.7520 + 5.82843i −1.61236 + 0.432032i
\(183\) 1.98444 + 3.43716i 0.146694 + 0.254082i
\(184\) 5.38134 0.396718
\(185\) −1.07107 13.5592i −0.0787465 0.996895i
\(186\) −2.64564 −0.193988
\(187\) −1.51985 2.63246i −0.111143 0.192505i
\(188\) −8.39924 + 2.25057i −0.612577 + 0.164140i
\(189\) 6.04524 10.4707i 0.439727 0.761629i
\(190\) 1.62534 4.28585i 0.117915 0.310928i
\(191\) 1.56014 + 1.56014i 0.112888 + 0.112888i 0.761294 0.648407i \(-0.224564\pi\)
−0.648407 + 0.761294i \(0.724564\pi\)
\(192\) −0.465926 + 0.124844i −0.0336253 + 0.00900987i
\(193\) 3.55067 0.255583 0.127792 0.991801i \(-0.459211\pi\)
0.127792 + 0.991801i \(0.459211\pi\)
\(194\) 7.33460 4.23463i 0.526593 0.304029i
\(195\) 0.896575 + 5.51639i 0.0642051 + 0.395037i
\(196\) 11.8883i 0.849163i
\(197\) −4.76595 + 17.7868i −0.339560 + 1.26725i 0.559281 + 0.828978i \(0.311077\pi\)
−0.898840 + 0.438276i \(0.855589\pi\)
\(198\) 4.92650 8.53295i 0.350111 0.606411i
\(199\) −5.97576 5.97576i −0.423610 0.423610i 0.462834 0.886445i \(-0.346832\pi\)
−0.886445 + 0.462834i \(0.846832\pi\)
\(200\) −3.31552 + 3.74264i −0.234442 + 0.264645i
\(201\) −1.37395 2.37976i −0.0969112 0.167855i
\(202\) 9.58128 5.53175i 0.674136 0.389213i
\(203\) −13.2682 7.66038i −0.931243 0.537653i
\(204\) 0.106584 + 0.397777i 0.00746238 + 0.0278500i
\(205\) −9.76305 0.986268i −0.681881 0.0688839i
\(206\) 2.89733 1.67277i 0.201867 0.116548i
\(207\) 12.8968 7.44597i 0.896389 0.517530i
\(208\) 5.18154 0.359275
\(209\) −7.04989 + 1.88901i −0.487651 + 0.130666i
\(210\) 4.66390 + 0.471150i 0.321840 + 0.0325124i
\(211\) 17.1087 1.17781 0.588907 0.808201i \(-0.299558\pi\)
0.588907 + 0.808201i \(0.299558\pi\)
\(212\) −9.42418 + 9.42418i −0.647255 + 0.647255i
\(213\) 0.186889 0.697479i 0.0128054 0.0477905i
\(214\) 3.94048 + 3.94048i 0.269366 + 0.269366i
\(215\) −20.7235 + 9.32723i −1.41333 + 0.636111i
\(216\) −1.96713 + 1.96713i −0.133846 + 0.133846i
\(217\) 11.9186 20.6436i 0.809086 1.40138i
\(218\) 3.03629 + 11.3316i 0.205643 + 0.767472i
\(219\) −2.13505 1.23267i −0.144273 0.0832963i
\(220\) 7.92116 + 0.800199i 0.534044 + 0.0539494i
\(221\) 4.42367i 0.297568i
\(222\) 2.65299 1.25321i 0.178057 0.0841101i
\(223\) 17.2354 17.2354i 1.15417 1.15417i 0.168460 0.985708i \(-0.446120\pi\)
0.985708 0.168460i \(-0.0538795\pi\)
\(224\) 1.12484 4.19798i 0.0751568 0.280489i
\(225\) −2.76733 + 13.5571i −0.184488 + 0.903805i
\(226\) −5.91928 3.41750i −0.393745 0.227329i
\(227\) 14.3768 + 8.30046i 0.954223 + 0.550921i 0.894390 0.447288i \(-0.147610\pi\)
0.0598325 + 0.998208i \(0.480943\pi\)
\(228\) 0.988788 0.0654841
\(229\) −10.8212 6.24761i −0.715083 0.412853i 0.0978571 0.995200i \(-0.468801\pi\)
−0.812940 + 0.582347i \(0.802135\pi\)
\(230\) 9.76344 + 7.03345i 0.643782 + 0.463772i
\(231\) −3.73205 6.46410i −0.245551 0.425307i
\(232\) 2.49269 + 2.49269i 0.163653 + 0.163653i
\(233\) 20.8106 + 20.8106i 1.36335 + 1.36335i 0.869610 + 0.493739i \(0.164370\pi\)
0.493739 + 0.869610i \(0.335630\pi\)
\(234\) 12.4180 7.16951i 0.811787 0.468685i
\(235\) −18.1804 6.89463i −1.18596 0.449756i
\(236\) 4.68216 4.68216i 0.304783 0.304783i
\(237\) 0.805183 + 1.39462i 0.0523023 + 0.0905902i
\(238\) −3.58396 0.960320i −0.232314 0.0622483i
\(239\) 6.23119 + 1.66964i 0.403062 + 0.108000i 0.454654 0.890668i \(-0.349763\pi\)
−0.0515920 + 0.998668i \(0.516430\pi\)
\(240\) −1.00851 0.382461i −0.0650989 0.0246878i
\(241\) −20.7353 + 5.55601i −1.33568 + 0.357894i −0.854829 0.518909i \(-0.826338\pi\)
−0.480849 + 0.876803i \(0.659672\pi\)
\(242\) −0.838502 1.45233i −0.0539009 0.0933591i
\(243\) −3.02898 + 11.3043i −0.194309 + 0.725173i
\(244\) 7.94767 + 2.12957i 0.508797 + 0.136332i
\(245\) −15.5381 + 21.5691i −0.992691 + 1.37800i
\(246\) −0.547866 2.04466i −0.0349307 0.130363i
\(247\) −10.2597 2.74907i −0.652806 0.174919i
\(248\) −3.87832 + 3.87832i −0.246273 + 0.246273i
\(249\) 7.66274 0.485607
\(250\) −10.9070 + 2.45692i −0.689822 + 0.155389i
\(251\) −4.47613 + 4.47613i −0.282531 + 0.282531i −0.834118 0.551587i \(-0.814023\pi\)
0.551587 + 0.834118i \(0.314023\pi\)
\(252\) −3.11281 11.6172i −0.196089 0.731813i
\(253\) 19.1601i 1.20459i
\(254\) −14.3107 + 3.83453i −0.897931 + 0.240600i
\(255\) −0.326521 + 0.860999i −0.0204475 + 0.0539179i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −19.1942 + 11.0818i −1.19730 + 0.691262i −0.959953 0.280163i \(-0.909612\pi\)
−0.237348 + 0.971425i \(0.576278\pi\)
\(258\) −3.46651 3.46651i −0.215815 0.215815i
\(259\) −2.17303 + 26.3466i −0.135026 + 1.63710i
\(260\) 9.40094 + 6.77231i 0.583021 + 0.420001i
\(261\) 9.42298 + 2.52488i 0.583268 + 0.156286i
\(262\) 3.47796 + 12.9799i 0.214869 + 0.801902i
\(263\) 3.57715 0.958496i 0.220577 0.0591034i −0.146838 0.989161i \(-0.546910\pi\)
0.367415 + 0.930057i \(0.380243\pi\)
\(264\) 0.444506 + 1.65892i 0.0273574 + 0.102099i
\(265\) −29.4159 + 4.78094i −1.80700 + 0.293691i
\(266\) −4.45447 + 7.71537i −0.273121 + 0.473060i
\(267\) 5.52104i 0.337882i
\(268\) −5.50266 1.47443i −0.336129 0.0900654i
\(269\) 15.1550i 0.924016i −0.886876 0.462008i \(-0.847129\pi\)
0.886876 0.462008i \(-0.152871\pi\)
\(270\) −6.14004 + 0.997936i −0.373671 + 0.0607324i
\(271\) −10.7474 18.6150i −0.652856 1.13078i −0.982427 0.186649i \(-0.940237\pi\)
0.329571 0.944131i \(-0.393096\pi\)
\(272\) 0.739357 + 0.426868i 0.0448301 + 0.0258827i
\(273\) 10.8625i 0.657426i
\(274\) −2.22154 + 8.29091i −0.134208 + 0.500872i
\(275\) 13.3256 + 11.8048i 0.803563 + 0.711857i
\(276\) −0.671831 + 2.50731i −0.0404395 + 0.150922i
\(277\) 13.9477 24.1581i 0.838034 1.45152i −0.0535021 0.998568i \(-0.517038\pi\)
0.891536 0.452950i \(-0.149628\pi\)
\(278\) −0.889767 + 1.54112i −0.0533647 + 0.0924304i
\(279\) −3.92839 + 14.6610i −0.235187 + 0.877729i
\(280\) 7.52761 6.14626i 0.449860 0.367310i
\(281\) −5.64004 + 21.0489i −0.336456 + 1.25567i 0.565825 + 0.824525i \(0.308558\pi\)
−0.902282 + 0.431147i \(0.858109\pi\)
\(282\) 4.19439i 0.249772i
\(283\) 24.7788 + 14.3060i 1.47294 + 0.850405i 0.999537 0.0304389i \(-0.00969051\pi\)
0.473407 + 0.880844i \(0.343024\pi\)
\(284\) −0.748487 1.29642i −0.0444145 0.0769282i
\(285\) 1.79397 + 1.29235i 0.106266 + 0.0765524i
\(286\) 18.4488i 1.09090i
\(287\) 18.4224 + 4.93626i 1.08744 + 0.291378i
\(288\) 2.76733i 0.163066i
\(289\) −8.13557 + 14.0912i −0.478563 + 0.828895i
\(290\) 1.26456 + 7.78050i 0.0742574 + 0.456886i
\(291\) 1.05734 + 3.94605i 0.0619824 + 0.231321i
\(292\) −4.93684 + 1.32282i −0.288906 + 0.0774122i
\(293\) −5.29543 19.7628i −0.309362 1.15456i −0.929125 0.369767i \(-0.879438\pi\)
0.619762 0.784790i \(-0.287229\pi\)
\(294\) −5.53906 1.48419i −0.323044 0.0865595i
\(295\) 14.6145 2.37529i 0.850891 0.138295i
\(296\) 2.05197 5.72620i 0.119268 0.332829i
\(297\) 7.00392 + 7.00392i 0.406408 + 0.406408i
\(298\) 1.56363 0.902761i 0.0905786 0.0522956i
\(299\) 13.9418 24.1479i 0.806276 1.39651i
\(300\) −1.32987 2.01203i −0.0767800 0.116165i
\(301\) 42.6652 11.4321i 2.45918 0.658936i
\(302\) 10.0070i 0.575841i
\(303\) 1.38122 + 5.15477i 0.0793488 + 0.296134i
\(304\) 1.44949 1.44949i 0.0831339 0.0831339i
\(305\) 11.6362 + 14.2514i 0.666286 + 0.816031i
\(306\) 2.36257 0.135059
\(307\) 8.09720 8.09720i 0.462131 0.462131i −0.437222 0.899354i \(-0.644038\pi\)
0.899354 + 0.437222i \(0.144038\pi\)
\(308\) −14.9468 4.00498i −0.851673 0.228205i
\(309\) 0.417673 + 1.55878i 0.0237606 + 0.0886758i
\(310\) −12.1055 + 1.96749i −0.687544 + 0.111746i
\(311\) 11.1837 + 2.99666i 0.634170 + 0.169925i 0.561561 0.827435i \(-0.310201\pi\)
0.0726086 + 0.997361i \(0.476868\pi\)
\(312\) −0.646887 + 2.41421i −0.0366227 + 0.136678i
\(313\) −2.06424 3.57537i −0.116678 0.202092i 0.801771 0.597631i \(-0.203891\pi\)
−0.918449 + 0.395539i \(0.870558\pi\)
\(314\) 1.41542 0.379259i 0.0798765 0.0214028i
\(315\) 9.53611 25.1457i 0.537299 1.41680i
\(316\) 3.22474 + 0.864068i 0.181406 + 0.0486076i
\(317\) −19.8213 5.31111i −1.11328 0.298302i −0.345117 0.938560i \(-0.612161\pi\)
−0.768160 + 0.640258i \(0.778827\pi\)
\(318\) −3.21441 5.56753i −0.180255 0.312211i
\(319\) 8.87518 8.87518i 0.496915 0.496915i
\(320\) −2.03906 + 0.917738i −0.113987 + 0.0513031i
\(321\) −2.32792 + 1.34403i −0.129932 + 0.0750162i
\(322\) −16.5376 16.5376i −0.921603 0.921603i
\(323\) −1.23748 1.23748i −0.0688553 0.0688553i
\(324\) 3.48004 + 6.02761i 0.193336 + 0.334867i
\(325\) 8.20478 + 24.5742i 0.455120 + 1.36313i
\(326\) −20.6628 11.9297i −1.14441 0.660723i
\(327\) −5.65874 −0.312929
\(328\) −3.80046 2.19419i −0.209845 0.121154i
\(329\) 32.7283 + 18.8957i 1.80437 + 1.04175i
\(330\) −1.36175 + 3.59077i −0.0749616 + 0.197665i
\(331\) −2.47355 + 9.23143i −0.135959 + 0.507405i 0.864033 + 0.503435i \(0.167931\pi\)
−0.999992 + 0.00397055i \(0.998736\pi\)
\(332\) 11.2330 11.2330i 0.616492 0.616492i
\(333\) −3.00544 16.5625i −0.164697 0.907620i
\(334\) 7.09173i 0.388042i
\(335\) −8.05646 9.86710i −0.440171 0.539097i
\(336\) 1.81552 + 1.04819i 0.0990445 + 0.0571834i
\(337\) −0.480404 1.79289i −0.0261693 0.0976651i 0.951606 0.307321i \(-0.0994324\pi\)
−0.977775 + 0.209656i \(0.932766\pi\)
\(338\) 6.92418 11.9930i 0.376626 0.652335i
\(339\) 2.33129 2.33129i 0.126618 0.126618i
\(340\) 0.783505 + 1.74082i 0.0424915 + 0.0944090i
\(341\) 13.8087 + 13.8087i 0.747781 + 0.747781i
\(342\) 1.46821 5.47942i 0.0793915 0.296293i
\(343\) 15.0223 15.0223i 0.811130 0.811130i
\(344\) −10.1633 −0.547967
\(345\) −4.49598 + 3.67095i −0.242055 + 0.197637i
\(346\) 0.832913 0.223178i 0.0447777 0.0119981i
\(347\) −25.5468 −1.37142 −0.685712 0.727873i \(-0.740509\pi\)
−0.685712 + 0.727873i \(0.740509\pi\)
\(348\) −1.47261 + 0.850212i −0.0789402 + 0.0455761i
\(349\) −2.42921 + 1.40250i −0.130032 + 0.0750743i −0.563605 0.826044i \(-0.690586\pi\)
0.433573 + 0.901119i \(0.357253\pi\)
\(350\) 21.6906 1.31261i 1.15941 0.0701621i
\(351\) 3.73081 + 13.9236i 0.199136 + 0.743185i
\(352\) 3.08346 + 1.78024i 0.164349 + 0.0948871i
\(353\) 20.2461 11.6891i 1.07759 0.622148i 0.147346 0.989085i \(-0.452927\pi\)
0.930246 + 0.366937i \(0.119593\pi\)
\(354\) 1.59700 + 2.76608i 0.0848795 + 0.147016i
\(355\) 0.336437 3.33038i 0.0178562 0.176758i
\(356\) 8.09343 + 8.09343i 0.428951 + 0.428951i
\(357\) 0.894876 1.54997i 0.0473618 0.0820331i
\(358\) −3.78817 + 14.1376i −0.200211 + 0.747197i
\(359\) 11.3570i 0.599401i −0.954033 0.299701i \(-0.903113\pi\)
0.954033 0.299701i \(-0.0968868\pi\)
\(360\) −3.61692 + 5.02080i −0.190628 + 0.264619i
\(361\) 12.8154 7.39898i 0.674495 0.389420i
\(362\) −13.4424 −0.706519
\(363\) 0.781359 0.209365i 0.0410107 0.0109888i
\(364\) −15.9236 15.9236i −0.834621 0.834621i
\(365\) −10.6859 4.05247i −0.559326 0.212116i
\(366\) −1.98444 + 3.43716i −0.103729 + 0.179663i
\(367\) −13.6336 + 3.65311i −0.711669 + 0.190691i −0.596451 0.802649i \(-0.703423\pi\)
−0.115217 + 0.993340i \(0.536756\pi\)
\(368\) 2.69067 + 4.66038i 0.140261 + 0.242939i
\(369\) −12.1441 −0.632197
\(370\) 11.2071 7.70719i 0.582630 0.400678i
\(371\) 57.9235 3.00724
\(372\) −1.32282 2.29119i −0.0685851 0.118793i
\(373\) 20.5188 5.49800i 1.06242 0.284676i 0.315047 0.949076i \(-0.397980\pi\)
0.747377 + 0.664400i \(0.231313\pi\)
\(374\) 1.51985 2.63246i 0.0785898 0.136121i
\(375\) 0.216941 5.38860i 0.0112028 0.278266i
\(376\) −6.14867 6.14867i −0.317093 0.317093i
\(377\) 17.6436 4.72758i 0.908690 0.243483i
\(378\) 12.0905 0.621868
\(379\) −20.1970 + 11.6607i −1.03745 + 0.598971i −0.919109 0.394002i \(-0.871090\pi\)
−0.118339 + 0.992973i \(0.537757\pi\)
\(380\) 4.52432 0.735335i 0.232093 0.0377219i
\(381\) 7.14643i 0.366123i
\(382\) −0.571050 + 2.13119i −0.0292175 + 0.109041i
\(383\) −0.900980 + 1.56054i −0.0460379 + 0.0797400i −0.888126 0.459600i \(-0.847993\pi\)
0.842088 + 0.539340i \(0.181326\pi\)
\(384\) −0.341081 0.341081i −0.0174057 0.0174057i
\(385\) −21.8836 26.8019i −1.11529 1.36595i
\(386\) 1.77534 + 3.07497i 0.0903623 + 0.156512i
\(387\) −24.3571 + 14.0626i −1.23814 + 0.714840i
\(388\) 7.33460 + 4.23463i 0.372358 + 0.214981i
\(389\) −9.18034 34.2615i −0.465462 1.73713i −0.655354 0.755322i \(-0.727481\pi\)
0.189893 0.981805i \(-0.439186\pi\)
\(390\) −4.32905 + 3.53465i −0.219210 + 0.178984i
\(391\) 3.97873 2.29712i 0.201213 0.116170i
\(392\) −10.2956 + 5.94414i −0.520004 + 0.300224i
\(393\) −6.48188 −0.326968
\(394\) −17.7868 + 4.76595i −0.896084 + 0.240105i
\(395\) 4.72135 + 5.78245i 0.237557 + 0.290947i
\(396\) 9.85301 0.495132
\(397\) −5.48440 + 5.48440i −0.275254 + 0.275254i −0.831211 0.555957i \(-0.812352\pi\)
0.555957 + 0.831211i \(0.312352\pi\)
\(398\) 2.18728 8.16304i 0.109638 0.409176i
\(399\) −3.03868 3.03868i −0.152124 0.152124i
\(400\) −4.89898 1.00000i −0.244949 0.0500000i
\(401\) 22.4765 22.4765i 1.12242 1.12242i 0.131045 0.991376i \(-0.458167\pi\)
0.991376 0.131045i \(-0.0418333\pi\)
\(402\) 1.37395 2.37976i 0.0685266 0.118692i
\(403\) 7.35552 + 27.4512i 0.366404 + 1.36744i
\(404\) 9.58128 + 5.53175i 0.476686 + 0.275215i
\(405\) −1.56424 + 15.4844i −0.0777278 + 0.769426i
\(406\) 15.3208i 0.760356i
\(407\) −20.3880 7.30599i −1.01060 0.362145i
\(408\) −0.291193 + 0.291193i −0.0144162 + 0.0144162i
\(409\) −1.03359 + 3.85739i −0.0511075 + 0.190736i −0.986760 0.162187i \(-0.948145\pi\)
0.935653 + 0.352922i \(0.114812\pi\)
\(410\) −4.02739 8.94818i −0.198899 0.441919i
\(411\) −3.58560 2.07015i −0.176865 0.102113i
\(412\) 2.89733 + 1.67277i 0.142741 + 0.0824117i
\(413\) −28.7778 −1.41606
\(414\) 12.8968 + 7.44597i 0.633843 + 0.365949i
\(415\) 35.0618 5.69857i 1.72112 0.279732i
\(416\) 2.59077 + 4.48735i 0.127023 + 0.220010i
\(417\) −0.606966 0.606966i −0.0297233 0.0297233i
\(418\) −5.16088 5.16088i −0.252427 0.252427i
\(419\) −13.2473 + 7.64835i −0.647174 + 0.373646i −0.787373 0.616477i \(-0.788559\pi\)
0.140199 + 0.990123i \(0.455226\pi\)
\(420\) 1.92392 + 4.27463i 0.0938779 + 0.208581i
\(421\) 23.9597 23.9597i 1.16773 1.16773i 0.184983 0.982742i \(-0.440777\pi\)
0.982742 0.184983i \(-0.0592231\pi\)
\(422\) 8.55437 + 14.8166i 0.416420 + 0.721261i
\(423\) −23.2434 6.22806i −1.13013 0.302819i
\(424\) −12.8737 3.44949i −0.625201 0.167522i
\(425\) −0.853736 + 4.18243i −0.0414123 + 0.202878i
\(426\) 0.697479 0.186889i 0.0337930 0.00905480i
\(427\) −17.8798 30.9687i −0.865263 1.49868i
\(428\) −1.44232 + 5.38280i −0.0697170 + 0.260188i
\(429\) 8.59575 + 2.30323i 0.415007 + 0.111201i
\(430\) −18.4394 13.2835i −0.889226 0.640586i
\(431\) −2.22234 8.29389i −0.107046 0.399503i 0.891523 0.452976i \(-0.149638\pi\)
−0.998569 + 0.0534731i \(0.982971\pi\)
\(432\) −2.68715 0.720019i −0.129285 0.0346419i
\(433\) 4.81916 4.81916i 0.231594 0.231594i −0.581764 0.813358i \(-0.697637\pi\)
0.813358 + 0.581764i \(0.197637\pi\)
\(434\) 23.8372 1.14422
\(435\) −3.78301 0.382161i −0.181381 0.0183232i
\(436\) −8.29530 + 8.29530i −0.397273 + 0.397273i
\(437\) −2.85507 10.6553i −0.136577 0.509711i
\(438\) 2.46535i 0.117799i
\(439\) −0.562542 + 0.150733i −0.0268487 + 0.00719408i −0.272218 0.962235i \(-0.587757\pi\)
0.245370 + 0.969430i \(0.421091\pi\)
\(440\) 3.26758 + 7.26002i 0.155776 + 0.346108i
\(441\) −16.4494 + 28.4912i −0.783304 + 1.35672i
\(442\) 3.83101 2.21183i 0.182222 0.105206i
\(443\) −5.60697 5.60697i −0.266395 0.266395i 0.561251 0.827646i \(-0.310320\pi\)
−0.827646 + 0.561251i \(0.810320\pi\)
\(444\) 2.41181 + 1.67095i 0.114459 + 0.0792998i
\(445\) 4.10585 + 25.2622i 0.194636 + 1.19754i
\(446\) 23.5440 + 6.30860i 1.11484 + 0.298721i
\(447\) 0.225409 + 0.841240i 0.0106615 + 0.0397893i
\(448\) 4.19798 1.12484i 0.198336 0.0531439i
\(449\) −0.125424 0.468090i −0.00591914 0.0220905i 0.962903 0.269847i \(-0.0869733\pi\)
−0.968822 + 0.247757i \(0.920307\pi\)
\(450\) −13.1244 + 4.38196i −0.618692 + 0.206568i
\(451\) −7.81238 + 13.5314i −0.367871 + 0.637171i
\(452\) 6.83500i 0.321491i
\(453\) 4.66254 + 1.24932i 0.219065 + 0.0586984i
\(454\) 16.6009i 0.779119i
\(455\) −8.07812 49.7025i −0.378708 2.33009i
\(456\) 0.494394 + 0.856315i 0.0231521 + 0.0401006i
\(457\) 35.5806 + 20.5425i 1.66439 + 0.960936i 0.970580 + 0.240779i \(0.0774030\pi\)
0.693811 + 0.720157i \(0.255930\pi\)
\(458\) 12.4952i 0.583863i
\(459\) −0.614706 + 2.29411i −0.0286920 + 0.107080i
\(460\) −1.20943 + 11.9721i −0.0563899 + 0.558203i
\(461\) −0.202745 + 0.756655i −0.00944278 + 0.0352409i −0.970486 0.241156i \(-0.922474\pi\)
0.961044 + 0.276396i \(0.0891403\pi\)
\(462\) 3.73205 6.46410i 0.173631 0.300737i
\(463\) −13.1422 + 22.7630i −0.610770 + 1.05788i 0.380341 + 0.924846i \(0.375807\pi\)
−0.991111 + 0.133038i \(0.957527\pi\)
\(464\) −0.912389 + 3.40508i −0.0423566 + 0.158077i
\(465\) 0.594595 5.88588i 0.0275737 0.272951i
\(466\) −7.61722 + 28.4278i −0.352861 + 1.31689i
\(467\) 32.5145i 1.50459i −0.658825 0.752296i \(-0.728946\pi\)
0.658825 0.752296i \(-0.271054\pi\)
\(468\) 12.4180 + 7.16951i 0.574020 + 0.331411i
\(469\) 12.3793 + 21.4415i 0.571622 + 0.990078i
\(470\) −3.11926 19.1920i −0.143881 0.885259i
\(471\) 0.706827i 0.0325689i
\(472\) 6.39595 + 1.71379i 0.294398 + 0.0788836i
\(473\) 36.1861i 1.66384i
\(474\) −0.805183 + 1.39462i −0.0369833 + 0.0640569i
\(475\) 9.16962 + 4.57919i 0.420731 + 0.210108i
\(476\) −0.960320 3.58396i −0.0440162 0.164271i
\(477\) −35.6257 + 9.54587i −1.63119 + 0.437075i
\(478\) 1.66964 + 6.23119i 0.0763676 + 0.285008i
\(479\) 17.6197 + 4.72118i 0.805064 + 0.215716i 0.637806 0.770197i \(-0.279842\pi\)
0.167258 + 0.985913i \(0.446509\pi\)
\(480\) −0.173033 1.06462i −0.00789782 0.0485932i
\(481\) −20.3793 24.0432i −0.929215 1.09627i
\(482\) −15.1793 15.1793i −0.691398 0.691398i
\(483\) 9.76991 5.64066i 0.444546 0.256659i
\(484\) 0.838502 1.45233i 0.0381137 0.0660149i
\(485\) 7.77256 + 17.2693i 0.352934 + 0.784159i
\(486\) −11.3043 + 3.02898i −0.512774 + 0.137397i
\(487\) 13.1697i 0.596775i −0.954445 0.298388i \(-0.903551\pi\)
0.954445 0.298388i \(-0.0964488\pi\)
\(488\) 2.12957 + 7.94767i 0.0964011 + 0.359774i
\(489\) 8.13797 8.13797i 0.368012 0.368012i
\(490\) −26.4484 2.67183i −1.19482 0.120701i
\(491\) 18.4085 0.830763 0.415382 0.909647i \(-0.363648\pi\)
0.415382 + 0.909647i \(0.363648\pi\)
\(492\) 1.49680 1.49680i 0.0674809 0.0674809i
\(493\) 2.90704 + 0.778939i 0.130927 + 0.0350817i
\(494\) −2.74907 10.2597i −0.123686 0.461604i
\(495\) 17.8764 + 12.8780i 0.803486 + 0.578821i
\(496\) −5.29788 1.41956i −0.237882 0.0637402i
\(497\) −1.68386 + 6.28426i −0.0755316 + 0.281888i
\(498\) 3.83137 + 6.63613i 0.171688 + 0.297372i
\(499\) −35.0542 + 9.39274i −1.56924 + 0.420477i −0.935575 0.353129i \(-0.885118\pi\)
−0.633667 + 0.773606i \(0.718451\pi\)
\(500\) −7.58128 8.21731i −0.339045 0.367489i
\(501\) 3.30422 + 0.885363i 0.147622 + 0.0395551i
\(502\) −6.11451 1.63838i −0.272904 0.0731244i
\(503\) −1.47409 2.55321i −0.0657266 0.113842i 0.831289 0.555840i \(-0.187603\pi\)
−0.897016 + 0.441998i \(0.854270\pi\)
\(504\) 8.50436 8.50436i 0.378814 0.378814i
\(505\) 10.1534 + 22.5591i 0.451820 + 1.00387i
\(506\) 16.5932 9.58007i 0.737657 0.425886i
\(507\) 4.72342 + 4.72342i 0.209774 + 0.209774i
\(508\) −10.4761 10.4761i −0.464803 0.464803i
\(509\) 8.50094 + 14.7241i 0.376798 + 0.652633i 0.990594 0.136831i \(-0.0436918\pi\)
−0.613797 + 0.789464i \(0.710359\pi\)
\(510\) −0.908908 + 0.147724i −0.0402471 + 0.00654133i
\(511\) 19.2368 + 11.1063i 0.850984 + 0.491316i
\(512\) −1.00000 −0.0441942
\(513\) 4.93865 + 2.85133i 0.218047 + 0.125889i
\(514\) −19.1942 11.0818i −0.846620 0.488796i
\(515\) 3.07034 + 6.82177i 0.135295 + 0.300603i
\(516\) 1.26883 4.73533i 0.0558571 0.208461i
\(517\) −21.8922 + 21.8922i −0.962818 + 0.962818i
\(518\) −23.9034 + 11.2914i −1.05025 + 0.496116i
\(519\) 0.415938i 0.0182577i
\(520\) −1.16452 + 11.5276i −0.0510678 + 0.505519i
\(521\) −14.3851 8.30526i −0.630224 0.363860i 0.150615 0.988593i \(-0.451875\pi\)
−0.780839 + 0.624732i \(0.785208\pi\)
\(522\) 2.52488 + 9.42298i 0.110511 + 0.412433i
\(523\) 4.30690 7.45977i 0.188328 0.326193i −0.756365 0.654150i \(-0.773027\pi\)
0.944693 + 0.327957i \(0.106360\pi\)
\(524\) −9.50196 + 9.50196i −0.415095 + 0.415095i
\(525\) −2.09638 + 10.2701i −0.0914934 + 0.448224i
\(526\) 2.61866 + 2.61866i 0.114179 + 0.114179i
\(527\) −1.21193 + 4.52299i −0.0527925 + 0.197024i
\(528\) −1.21441 + 1.21441i −0.0528505 + 0.0528505i
\(529\) 5.95884 0.259080
\(530\) −18.8484 23.0844i −0.818721 1.00272i
\(531\) 17.6997 4.74262i 0.768101 0.205812i
\(532\) −8.90895 −0.386252
\(533\) −19.6922 + 11.3693i −0.852965 + 0.492459i
\(534\) −4.78136 + 2.76052i −0.206910 + 0.119459i
\(535\) −9.65217 + 7.88097i −0.417300 + 0.340724i
\(536\) −1.47443 5.50266i −0.0636858 0.237679i
\(537\) −6.11416 3.53001i −0.263845 0.152331i
\(538\) 13.1246 7.57749i 0.565842 0.326689i
\(539\) 21.1640 + 36.6571i 0.911597 + 1.57893i
\(540\) −3.93426 4.81846i −0.169303 0.207353i
\(541\) −21.8799 21.8799i −0.940689 0.940689i 0.0576477 0.998337i \(-0.481640\pi\)
−0.998337 + 0.0576477i \(0.981640\pi\)
\(542\) 10.7474 18.6150i 0.461639 0.799582i
\(543\) 1.67821 6.26318i 0.0720191 0.268779i
\(544\) 0.853736i 0.0366036i
\(545\) −25.8923 + 4.20825i −1.10910 + 0.180262i
\(546\) 9.40717 5.43123i 0.402590 0.232435i
\(547\) 6.52719 0.279083 0.139541 0.990216i \(-0.455437\pi\)
0.139541 + 0.990216i \(0.455437\pi\)
\(548\) −8.29091 + 2.22154i −0.354170 + 0.0948996i
\(549\) 16.1006 + 16.1006i 0.687156 + 0.687156i
\(550\) −3.56048 + 17.4427i −0.151819 + 0.743760i
\(551\) 3.61313 6.25813i 0.153925 0.266605i
\(552\) −2.50731 + 0.671831i −0.106718 + 0.0285950i
\(553\) −7.25467 12.5655i −0.308500 0.534338i
\(554\) 27.8953 1.18516
\(555\) 2.19183 + 6.18388i 0.0930381 + 0.262491i
\(556\) −1.77953 −0.0754691
\(557\) −9.28303 16.0787i −0.393335 0.681276i 0.599552 0.800336i \(-0.295345\pi\)
−0.992887 + 0.119060i \(0.962012\pi\)
\(558\) −14.6610 + 3.92839i −0.620648 + 0.166302i
\(559\) −26.3307 + 45.6062i −1.11367 + 1.92893i
\(560\) 9.08662 + 3.44597i 0.383980 + 0.145619i
\(561\) 1.03679 + 1.03679i 0.0437732 + 0.0437732i
\(562\) −21.0489 + 5.64004i −0.887894 + 0.237911i
\(563\) 37.7909 1.59269 0.796347 0.604839i \(-0.206763\pi\)
0.796347 + 0.604839i \(0.206763\pi\)
\(564\) 3.63245 2.09720i 0.152954 0.0883079i
\(565\) 8.93339 12.4008i 0.375830 0.521706i
\(566\) 28.6120i 1.20265i
\(567\) 7.82901 29.2183i 0.328787 1.22705i
\(568\) 0.748487 1.29642i 0.0314058 0.0543965i
\(569\) −17.0143 17.0143i −0.713277 0.713277i 0.253942 0.967219i \(-0.418273\pi\)
−0.967219 + 0.253942i \(0.918273\pi\)
\(570\) −0.222225 + 2.19980i −0.00930798 + 0.0921395i
\(571\) −13.0962 22.6833i −0.548060 0.949268i −0.998407 0.0564144i \(-0.982033\pi\)
0.450347 0.892853i \(-0.351300\pi\)
\(572\) 15.9771 9.22438i 0.668036 0.385691i
\(573\) −0.921683 0.532134i −0.0385039 0.0222302i
\(574\) 4.93626 + 18.4224i 0.206035 + 0.768934i
\(575\) −17.8419 + 20.1404i −0.744059 + 0.839914i
\(576\) −2.39658 + 1.38366i −0.0998573 + 0.0576526i
\(577\) −4.70169 + 2.71452i −0.195734 + 0.113007i −0.594664 0.803974i \(-0.702715\pi\)
0.398930 + 0.916981i \(0.369382\pi\)
\(578\) −16.2711 −0.676790
\(579\) −1.65435 + 0.443282i −0.0687525 + 0.0184222i
\(580\) −6.10583 + 4.98539i −0.253531 + 0.207007i
\(581\) −69.0411 −2.86431
\(582\) −2.88871 + 2.88871i −0.119741 + 0.119741i
\(583\) −12.2818 + 45.8364i −0.508662 + 1.89835i
\(584\) −3.61401 3.61401i −0.149549 0.149549i
\(585\) 13.1595 + 29.2381i 0.544077 + 1.20885i
\(586\) 14.4674 14.4674i 0.597642 0.597642i
\(587\) −16.1544 + 27.9803i −0.666764 + 1.15487i 0.312040 + 0.950069i \(0.398988\pi\)
−0.978804 + 0.204800i \(0.934346\pi\)
\(588\) −1.48419 5.53906i −0.0612068 0.228427i
\(589\) 9.73686 + 5.62158i 0.401200 + 0.231633i
\(590\) 9.36433 + 11.4689i 0.385523 + 0.472168i
\(591\) 8.88232i 0.365370i
\(592\) 5.98502 1.08604i 0.245983 0.0446361i
\(593\) 6.35042 6.35042i 0.260780 0.260780i −0.564591 0.825371i \(-0.690966\pi\)
0.825371 + 0.564591i \(0.190966\pi\)
\(594\) −2.56361 + 9.56753i −0.105186 + 0.392560i
\(595\) 2.94194 7.75757i 0.120608 0.318030i
\(596\) 1.56363 + 0.902761i 0.0640487 + 0.0369785i
\(597\) 3.53030 + 2.03822i 0.144486 + 0.0834188i
\(598\) 27.8836 1.14025
\(599\) 12.2925 + 7.09708i 0.502258 + 0.289979i 0.729646 0.683826i \(-0.239685\pi\)
−0.227387 + 0.973804i \(0.573018\pi\)
\(600\) 1.07754 2.15772i 0.0439902 0.0880884i
\(601\) 10.1854 + 17.6417i 0.415473 + 0.719620i 0.995478 0.0949925i \(-0.0302827\pi\)
−0.580005 + 0.814613i \(0.696949\pi\)
\(602\) 31.2331 + 31.2331i 1.27297 + 1.27297i
\(603\) −11.1474 11.1474i −0.453958 0.453958i
\(604\) 8.66636 5.00352i 0.352629 0.203591i
\(605\) 3.41951 1.53905i 0.139023 0.0625712i
\(606\) −3.77356 + 3.77356i −0.153290 + 0.153290i
\(607\) −7.70604 13.3472i −0.312778 0.541748i 0.666184 0.745787i \(-0.267926\pi\)
−0.978963 + 0.204039i \(0.934593\pi\)
\(608\) 1.98004 + 0.530550i 0.0803012 + 0.0215166i
\(609\) 7.13834 + 1.91271i 0.289260 + 0.0775070i
\(610\) −6.52395 + 17.2029i −0.264147 + 0.696526i
\(611\) −43.5210 + 11.6614i −1.76067 + 0.471770i
\(612\) 1.18128 + 2.04604i 0.0477505 + 0.0827063i
\(613\) 4.48320 16.7315i 0.181075 0.675780i −0.814362 0.580357i \(-0.802913\pi\)
0.995437 0.0954229i \(-0.0304204\pi\)
\(614\) 11.0610 + 2.96378i 0.446385 + 0.119608i
\(615\) 4.67199 0.759334i 0.188393 0.0306193i
\(616\) −4.00498 14.9468i −0.161365 0.602224i
\(617\) 25.5264 + 6.83977i 1.02765 + 0.275359i 0.732988 0.680242i \(-0.238125\pi\)
0.294665 + 0.955601i \(0.404792\pi\)
\(618\) −1.14110 + 1.14110i −0.0459020 + 0.0459020i
\(619\) 24.0311 0.965892 0.482946 0.875650i \(-0.339567\pi\)
0.482946 + 0.875650i \(0.339567\pi\)
\(620\) −7.75663 9.49989i −0.311514 0.381525i
\(621\) −10.5858 + 10.5858i −0.424793 + 0.424793i
\(622\) 2.99666 + 11.1837i 0.120155 + 0.448426i
\(623\) 49.7444i 1.99297i
\(624\) −2.41421 + 0.646887i −0.0966459 + 0.0258962i
\(625\) −3.01472 24.8176i −0.120589 0.992703i
\(626\) 2.06424 3.57537i 0.0825037 0.142901i
\(627\) 3.04889 1.76028i 0.121761 0.0702988i
\(628\) 1.03616 + 1.03616i 0.0413471 + 0.0413471i
\(629\) −0.927195 5.10963i −0.0369697 0.203734i
\(630\) 26.5448 4.31431i 1.05757 0.171886i
\(631\) 2.58625 + 0.692984i 0.102957 + 0.0275872i 0.309930 0.950759i \(-0.399694\pi\)
−0.206973 + 0.978347i \(0.566361\pi\)
\(632\) 0.864068 + 3.22474i 0.0343708 + 0.128273i
\(633\) −7.97141 + 2.13593i −0.316835 + 0.0848957i
\(634\) −5.31111 19.8213i −0.210931 0.787206i
\(635\) −5.31460 32.6994i −0.210904 1.29763i
\(636\) 3.21441 5.56753i 0.127460 0.220767i
\(637\) 61.5996i 2.44067i
\(638\) 12.1237 + 3.24854i 0.479983 + 0.128611i
\(639\) 4.14262i 0.163879i
\(640\) −1.81431 1.30701i −0.0717170 0.0516640i
\(641\) −8.59978 14.8952i −0.339671 0.588327i 0.644700 0.764436i \(-0.276982\pi\)
−0.984371 + 0.176109i \(0.943649\pi\)
\(642\) −2.32792 1.34403i −0.0918757 0.0530445i
\(643\) 14.4135i 0.568412i 0.958763 + 0.284206i \(0.0917299\pi\)
−0.958763 + 0.284206i \(0.908270\pi\)
\(644\) 6.05317 22.5907i 0.238528 0.890200i
\(645\) 8.49117 6.93301i 0.334339 0.272987i
\(646\) 0.452949 1.69043i 0.0178211 0.0665091i
\(647\) 11.2871 19.5498i 0.443740 0.768580i −0.554224 0.832368i \(-0.686985\pi\)
0.997963 + 0.0637877i \(0.0203181\pi\)
\(648\) −3.48004 + 6.02761i −0.136709 + 0.236787i
\(649\) 6.10191 22.7727i 0.239521 0.893905i
\(650\) −17.1795 + 19.3926i −0.673834 + 0.760642i
\(651\) −2.97594 + 11.1063i −0.116636 + 0.435292i
\(652\) 23.8593i 0.934403i
\(653\) 7.05249 + 4.07175i 0.275985 + 0.159340i 0.631604 0.775291i \(-0.282397\pi\)
−0.355619 + 0.934631i \(0.615730\pi\)
\(654\) −2.82937 4.90062i −0.110637 0.191629i
\(655\) −29.6587 + 4.82040i −1.15886 + 0.188349i
\(656\) 4.38839i 0.171338i
\(657\) −13.6618 3.66068i −0.532999 0.142817i
\(658\) 37.7913i 1.47326i
\(659\) 4.31784 7.47871i 0.168199 0.291329i −0.769588 0.638541i \(-0.779538\pi\)
0.937787 + 0.347212i \(0.112872\pi\)
\(660\) −3.79057 + 0.616079i −0.147548 + 0.0239808i
\(661\) −4.20119 15.6791i −0.163407 0.609845i −0.998238 0.0593378i \(-0.981101\pi\)
0.834831 0.550507i \(-0.185566\pi\)
\(662\) −9.23143 + 2.47355i −0.358790 + 0.0961374i
\(663\) 0.552270 + 2.06110i 0.0214484 + 0.0800465i
\(664\) 15.3446 + 4.11157i 0.595485 + 0.159560i
\(665\) −16.1636 11.6441i −0.626798 0.451537i
\(666\) 12.8408 10.8840i 0.497572 0.421748i
\(667\) 13.4140 + 13.4140i 0.519394 + 0.519394i
\(668\) 6.14162 3.54587i 0.237626 0.137194i
\(669\) −5.87868 + 10.1822i −0.227283 + 0.393666i
\(670\) 4.51693 11.9106i 0.174504 0.460148i
\(671\) 28.2975 7.58229i 1.09241 0.292711i
\(672\) 2.09638i 0.0808695i
\(673\) −4.09744 15.2919i −0.157945 0.589458i −0.998835 0.0482527i \(-0.984635\pi\)
0.840890 0.541206i \(-0.182032\pi\)
\(674\) 1.31249 1.31249i 0.0505552 0.0505552i
\(675\) −0.840211 13.8843i −0.0323397 0.534407i
\(676\) 13.8484 0.532629
\(677\) 29.4703 29.4703i 1.13264 1.13264i 0.142898 0.989737i \(-0.454358\pi\)
0.989737 0.142898i \(-0.0456422\pi\)
\(678\) 3.18460 + 0.853311i 0.122304 + 0.0327712i
\(679\) −9.52660 35.5538i −0.365597 1.36443i
\(680\) −1.11584 + 1.54894i −0.0427905 + 0.0593993i
\(681\) −7.73479 2.07253i −0.296398 0.0794196i
\(682\) −5.05432 + 18.8630i −0.193540 + 0.722301i
\(683\) −1.26026 2.18284i −0.0482226 0.0835239i 0.840907 0.541180i \(-0.182022\pi\)
−0.889129 + 0.457656i \(0.848689\pi\)
\(684\) 5.47942 1.46821i 0.209511 0.0561382i
\(685\) −17.9459 6.80571i −0.685677 0.260033i
\(686\) 20.5209 + 5.49856i 0.783491 + 0.209936i
\(687\) 5.82184 + 1.55996i 0.222117 + 0.0595161i
\(688\) −5.08164 8.80166i −0.193736 0.335560i
\(689\) −48.8318 + 48.8318i −1.86034 + 1.86034i
\(690\) −5.42713 2.05816i −0.206607 0.0783527i
\(691\) −13.1244 + 7.57738i −0.499276 + 0.288257i −0.728414 0.685137i \(-0.759742\pi\)
0.229139 + 0.973394i \(0.426409\pi\)
\(692\) 0.609735 + 0.609735i 0.0231786 + 0.0231786i
\(693\) −30.2796 30.2796i −1.15023 1.15023i
\(694\) −12.7734 22.1242i −0.484872 0.839823i
\(695\) −3.22863 2.32586i −0.122469 0.0882251i
\(696\) −1.47261 0.850212i −0.0558191 0.0322272i
\(697\) −3.74652 −0.141910
\(698\) −2.42921 1.40250i −0.0919469 0.0530855i
\(699\) −12.2943 7.09812i −0.465013 0.268475i
\(700\) 11.9821 + 18.1283i 0.452880 + 0.685187i
\(701\) −7.45591 + 27.8258i −0.281606 + 1.05097i 0.669678 + 0.742651i \(0.266432\pi\)
−0.951284 + 0.308316i \(0.900235\pi\)
\(702\) −10.1928 + 10.1928i −0.384701 + 0.384701i
\(703\) −12.4268 1.02494i −0.468685 0.0386565i
\(704\) 3.56048i 0.134191i
\(705\) 9.33145 + 0.942668i 0.351443 + 0.0355029i
\(706\) 20.2461 + 11.6891i 0.761973 + 0.439925i
\(707\) −12.4447 46.4443i −0.468032 1.74672i
\(708\) −1.59700 + 2.76608i −0.0600189 + 0.103956i
\(709\) −12.3845 + 12.3845i −0.465110 + 0.465110i −0.900326 0.435216i \(-0.856672\pi\)
0.435216 + 0.900326i \(0.356672\pi\)
\(710\) 3.05242 1.37383i 0.114555 0.0515589i
\(711\) 6.53277 + 6.53277i 0.244998 + 0.244998i
\(712\) −2.96240 + 11.0558i −0.111021 + 0.414335i
\(713\) −20.8705 + 20.8705i −0.781608 + 0.781608i
\(714\) 1.78975 0.0669798
\(715\) 41.0438 + 4.14626i 1.53495 + 0.155061i
\(716\) −14.1376 + 3.78817i −0.528348 + 0.141570i
\(717\) −3.11172 −0.116209
\(718\) 9.83548 5.67851i 0.367057 0.211920i
\(719\) 38.5743 22.2709i 1.43858 0.830565i 0.440829 0.897591i \(-0.354684\pi\)
0.997751 + 0.0670263i \(0.0213512\pi\)
\(720\) −6.15660 0.621943i −0.229443 0.0231784i
\(721\) −3.76322 14.0445i −0.140150 0.523046i
\(722\) 12.8154 + 7.39898i 0.476940 + 0.275362i
\(723\) 8.96748 5.17738i 0.333504 0.192549i
\(724\) −6.72122 11.6415i −0.249792 0.432653i
\(725\) −17.5938 + 1.06469i −0.653418 + 0.0395417i
\(726\) 0.571995 + 0.571995i 0.0212287 + 0.0212287i
\(727\) −9.03837 + 15.6549i −0.335215 + 0.580609i −0.983526 0.180766i \(-0.942142\pi\)
0.648311 + 0.761375i \(0.275476\pi\)
\(728\) 5.82843 21.7520i 0.216016 0.806182i
\(729\) 15.2351i 0.564263i
\(730\) −1.83341 11.2805i −0.0678576 0.417510i
\(731\) −7.51429 + 4.33838i −0.277926 + 0.160461i
\(732\) −3.96889 −0.146694
\(733\) 27.2404 7.29904i 1.00615 0.269596i 0.282128 0.959377i \(-0.408960\pi\)
0.724018 + 0.689781i \(0.242293\pi\)
\(734\) −9.98050 9.98050i −0.368387 0.368387i
\(735\) 4.54681 11.9894i 0.167712 0.442237i
\(736\) −2.69067 + 4.66038i −0.0991794 + 0.171784i
\(737\) −19.5921 + 5.24969i −0.721684 + 0.193375i
\(738\) −6.07205 10.5171i −0.223515 0.387140i
\(739\) −10.3182 −0.379563 −0.189781 0.981826i \(-0.560778\pi\)
−0.189781 + 0.981826i \(0.560778\pi\)
\(740\) 12.2782 + 5.85204i 0.451355 + 0.215125i
\(741\) 5.12344 0.188214
\(742\) 28.9618 + 50.1632i 1.06322 + 1.84155i
\(743\) −14.1876 + 3.80155i −0.520491 + 0.139465i −0.509494 0.860474i \(-0.670167\pi\)
−0.0109975 + 0.999940i \(0.503501\pi\)
\(744\) 1.32282 2.29119i 0.0484970 0.0839992i
\(745\) 1.65700 + 3.68157i 0.0607076 + 0.134882i
\(746\) 15.0208 + 15.0208i 0.549951 + 0.549951i
\(747\) 42.4635 11.3781i 1.55366 0.416301i
\(748\) 3.03971 0.111143
\(749\) 20.9745 12.1096i 0.766391 0.442476i
\(750\) 4.77514 2.50643i 0.174363 0.0915217i
\(751\) 35.5383i 1.29681i 0.761295 + 0.648406i \(0.224564\pi\)
−0.761295 + 0.648406i \(0.775436\pi\)
\(752\) 2.25057 8.39924i 0.0820698 0.306289i
\(753\) 1.52673 2.64437i 0.0556370 0.0963661i
\(754\) 12.9160 + 12.9160i 0.470373 + 0.470373i
\(755\) 22.2631 + 2.24903i 0.810238 + 0.0818507i
\(756\) 6.04524 + 10.4707i 0.219863 + 0.380815i
\(757\) −13.5809 + 7.84096i −0.493608 + 0.284984i −0.726070 0.687621i \(-0.758655\pi\)
0.232462 + 0.972605i \(0.425322\pi\)
\(758\) −20.1970 11.6607i −0.733586 0.423536i
\(759\) 2.39204 + 8.92721i 0.0868255 + 0.324037i
\(760\) 2.89898 + 3.55051i 0.105157 + 0.128791i
\(761\) 8.62460 4.97942i 0.312642 0.180504i −0.335466 0.942052i \(-0.608894\pi\)
0.648108 + 0.761548i \(0.275561\pi\)
\(762\) 6.18899 3.57321i 0.224203 0.129444i
\(763\) 50.9851 1.84578
\(764\) −2.13119 + 0.571050i −0.0771037 + 0.0206599i
\(765\) −0.530975 + 5.25611i −0.0191974 + 0.190035i