Properties

Label 37.8.c
Level $37$
Weight $8$
Character orbit 37.c
Rep. character $\chi_{37}(10,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $42$
Newform subspaces $1$
Sturm bound $25$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 37.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(25\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(37, [\chi])\).

Total New Old
Modular forms 46 46 0
Cusp forms 42 42 0
Eisenstein series 4 4 0

Trace form

\( 42 q - 16 q^{2} - 68 q^{3} - 1126 q^{4} - 337 q^{5} + 252 q^{6} - 158 q^{7} + 6264 q^{8} - 12773 q^{9} + 10028 q^{10} + 14876 q^{11} - 4836 q^{12} - 5922 q^{13} + 20176 q^{14} - 8460 q^{15} - 36726 q^{16}+ \cdots - 35534038 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(37, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
37.8.c.a 37.c 37.c $42$ $11.558$ None 37.8.c.a \(-16\) \(-68\) \(-337\) \(-158\) $\mathrm{SU}(2)[C_{3}]$