Properties

Label 368.4.a.l.1.3
Level $368$
Weight $4$
Character 368.1
Self dual yes
Analytic conductor $21.713$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [368,4,Mod(1,368)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("368.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(368, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 368.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.7127028821\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.334189.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.743529\) of defining polynomial
Character \(\chi\) \(=\) 368.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.55870 q^{3} +10.0635 q^{5} -24.3381 q^{7} -24.5704 q^{9} -1.55839 q^{11} +85.6294 q^{13} -15.6860 q^{15} -35.1015 q^{17} +124.400 q^{19} +37.9359 q^{21} +23.0000 q^{23} -23.7259 q^{25} +80.3831 q^{27} +130.943 q^{29} +82.0830 q^{31} +2.42907 q^{33} -244.926 q^{35} -107.402 q^{37} -133.471 q^{39} +35.6655 q^{41} +227.986 q^{43} -247.265 q^{45} +268.071 q^{47} +249.342 q^{49} +54.7128 q^{51} +567.034 q^{53} -15.6829 q^{55} -193.902 q^{57} +422.803 q^{59} -57.0580 q^{61} +597.997 q^{63} +861.732 q^{65} +517.544 q^{67} -35.8502 q^{69} +418.494 q^{71} +586.385 q^{73} +36.9817 q^{75} +37.9282 q^{77} -595.986 q^{79} +538.108 q^{81} -346.074 q^{83} -353.244 q^{85} -204.102 q^{87} -322.588 q^{89} -2084.05 q^{91} -127.943 q^{93} +1251.90 q^{95} -1102.27 q^{97} +38.2903 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 7 q^{3} + 14 q^{5} - 16 q^{7} - 33 q^{9} - 8 q^{11} + 111 q^{13} - 10 q^{15} + 98 q^{17} - 96 q^{19} + 180 q^{21} + 92 q^{23} + 184 q^{25} + 155 q^{27} + 21 q^{29} + 193 q^{31} - 418 q^{33} + 752 q^{35}+ \cdots + 1498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.55870 −0.299973 −0.149986 0.988688i \(-0.547923\pi\)
−0.149986 + 0.988688i \(0.547923\pi\)
\(4\) 0 0
\(5\) 10.0635 0.900107 0.450054 0.893002i \(-0.351405\pi\)
0.450054 + 0.893002i \(0.351405\pi\)
\(6\) 0 0
\(7\) −24.3381 −1.31413 −0.657066 0.753833i \(-0.728203\pi\)
−0.657066 + 0.753833i \(0.728203\pi\)
\(8\) 0 0
\(9\) −24.5704 −0.910016
\(10\) 0 0
\(11\) −1.55839 −0.0427156 −0.0213578 0.999772i \(-0.506799\pi\)
−0.0213578 + 0.999772i \(0.506799\pi\)
\(12\) 0 0
\(13\) 85.6294 1.82687 0.913435 0.406984i \(-0.133419\pi\)
0.913435 + 0.406984i \(0.133419\pi\)
\(14\) 0 0
\(15\) −15.6860 −0.270008
\(16\) 0 0
\(17\) −35.1015 −0.500786 −0.250393 0.968144i \(-0.580560\pi\)
−0.250393 + 0.968144i \(0.580560\pi\)
\(18\) 0 0
\(19\) 124.400 1.50207 0.751033 0.660265i \(-0.229556\pi\)
0.751033 + 0.660265i \(0.229556\pi\)
\(20\) 0 0
\(21\) 37.9359 0.394204
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −23.7259 −0.189807
\(26\) 0 0
\(27\) 80.3831 0.572953
\(28\) 0 0
\(29\) 130.943 0.838467 0.419234 0.907878i \(-0.362299\pi\)
0.419234 + 0.907878i \(0.362299\pi\)
\(30\) 0 0
\(31\) 82.0830 0.475566 0.237783 0.971318i \(-0.423579\pi\)
0.237783 + 0.971318i \(0.423579\pi\)
\(32\) 0 0
\(33\) 2.42907 0.0128135
\(34\) 0 0
\(35\) −244.926 −1.18286
\(36\) 0 0
\(37\) −107.402 −0.477209 −0.238604 0.971117i \(-0.576690\pi\)
−0.238604 + 0.971117i \(0.576690\pi\)
\(38\) 0 0
\(39\) −133.471 −0.548012
\(40\) 0 0
\(41\) 35.6655 0.135854 0.0679270 0.997690i \(-0.478361\pi\)
0.0679270 + 0.997690i \(0.478361\pi\)
\(42\) 0 0
\(43\) 227.986 0.808548 0.404274 0.914638i \(-0.367524\pi\)
0.404274 + 0.914638i \(0.367524\pi\)
\(44\) 0 0
\(45\) −247.265 −0.819112
\(46\) 0 0
\(47\) 268.071 0.831961 0.415980 0.909374i \(-0.363438\pi\)
0.415980 + 0.909374i \(0.363438\pi\)
\(48\) 0 0
\(49\) 249.342 0.726945
\(50\) 0 0
\(51\) 54.7128 0.150222
\(52\) 0 0
\(53\) 567.034 1.46959 0.734794 0.678291i \(-0.237279\pi\)
0.734794 + 0.678291i \(0.237279\pi\)
\(54\) 0 0
\(55\) −15.6829 −0.0384487
\(56\) 0 0
\(57\) −193.902 −0.450579
\(58\) 0 0
\(59\) 422.803 0.932955 0.466477 0.884533i \(-0.345523\pi\)
0.466477 + 0.884533i \(0.345523\pi\)
\(60\) 0 0
\(61\) −57.0580 −0.119763 −0.0598814 0.998206i \(-0.519072\pi\)
−0.0598814 + 0.998206i \(0.519072\pi\)
\(62\) 0 0
\(63\) 597.997 1.19588
\(64\) 0 0
\(65\) 861.732 1.64438
\(66\) 0 0
\(67\) 517.544 0.943702 0.471851 0.881678i \(-0.343586\pi\)
0.471851 + 0.881678i \(0.343586\pi\)
\(68\) 0 0
\(69\) −35.8502 −0.0625486
\(70\) 0 0
\(71\) 418.494 0.699523 0.349761 0.936839i \(-0.386263\pi\)
0.349761 + 0.936839i \(0.386263\pi\)
\(72\) 0 0
\(73\) 586.385 0.940154 0.470077 0.882625i \(-0.344226\pi\)
0.470077 + 0.882625i \(0.344226\pi\)
\(74\) 0 0
\(75\) 36.9817 0.0569370
\(76\) 0 0
\(77\) 37.9282 0.0561340
\(78\) 0 0
\(79\) −595.986 −0.848781 −0.424390 0.905479i \(-0.639512\pi\)
−0.424390 + 0.905479i \(0.639512\pi\)
\(80\) 0 0
\(81\) 538.108 0.738146
\(82\) 0 0
\(83\) −346.074 −0.457669 −0.228835 0.973465i \(-0.573492\pi\)
−0.228835 + 0.973465i \(0.573492\pi\)
\(84\) 0 0
\(85\) −353.244 −0.450761
\(86\) 0 0
\(87\) −204.102 −0.251517
\(88\) 0 0
\(89\) −322.588 −0.384206 −0.192103 0.981375i \(-0.561531\pi\)
−0.192103 + 0.981375i \(0.561531\pi\)
\(90\) 0 0
\(91\) −2084.05 −2.40075
\(92\) 0 0
\(93\) −127.943 −0.142657
\(94\) 0 0
\(95\) 1251.90 1.35202
\(96\) 0 0
\(97\) −1102.27 −1.15380 −0.576900 0.816815i \(-0.695738\pi\)
−0.576900 + 0.816815i \(0.695738\pi\)
\(98\) 0 0
\(99\) 38.2903 0.0388719
\(100\) 0 0
\(101\) −281.413 −0.277244 −0.138622 0.990345i \(-0.544267\pi\)
−0.138622 + 0.990345i \(0.544267\pi\)
\(102\) 0 0
\(103\) −606.665 −0.580354 −0.290177 0.956973i \(-0.593714\pi\)
−0.290177 + 0.956973i \(0.593714\pi\)
\(104\) 0 0
\(105\) 381.768 0.354826
\(106\) 0 0
\(107\) −758.318 −0.685135 −0.342567 0.939493i \(-0.611296\pi\)
−0.342567 + 0.939493i \(0.611296\pi\)
\(108\) 0 0
\(109\) 1730.34 1.52052 0.760261 0.649618i \(-0.225071\pi\)
0.760261 + 0.649618i \(0.225071\pi\)
\(110\) 0 0
\(111\) 167.407 0.143150
\(112\) 0 0
\(113\) 1712.46 1.42561 0.712807 0.701361i \(-0.247424\pi\)
0.712807 + 0.701361i \(0.247424\pi\)
\(114\) 0 0
\(115\) 231.461 0.187685
\(116\) 0 0
\(117\) −2103.95 −1.66248
\(118\) 0 0
\(119\) 854.303 0.658099
\(120\) 0 0
\(121\) −1328.57 −0.998175
\(122\) 0 0
\(123\) −55.5920 −0.0407525
\(124\) 0 0
\(125\) −1496.70 −1.07095
\(126\) 0 0
\(127\) −1008.43 −0.704594 −0.352297 0.935888i \(-0.614599\pi\)
−0.352297 + 0.935888i \(0.614599\pi\)
\(128\) 0 0
\(129\) −355.363 −0.242542
\(130\) 0 0
\(131\) 338.615 0.225839 0.112920 0.993604i \(-0.463980\pi\)
0.112920 + 0.993604i \(0.463980\pi\)
\(132\) 0 0
\(133\) −3027.65 −1.97391
\(134\) 0 0
\(135\) 808.935 0.515719
\(136\) 0 0
\(137\) 341.454 0.212937 0.106469 0.994316i \(-0.466046\pi\)
0.106469 + 0.994316i \(0.466046\pi\)
\(138\) 0 0
\(139\) 510.426 0.311466 0.155733 0.987799i \(-0.450226\pi\)
0.155733 + 0.987799i \(0.450226\pi\)
\(140\) 0 0
\(141\) −417.843 −0.249566
\(142\) 0 0
\(143\) −133.444 −0.0780360
\(144\) 0 0
\(145\) 1317.75 0.754710
\(146\) 0 0
\(147\) −388.651 −0.218064
\(148\) 0 0
\(149\) −1989.54 −1.09389 −0.546944 0.837169i \(-0.684209\pi\)
−0.546944 + 0.837169i \(0.684209\pi\)
\(150\) 0 0
\(151\) −607.109 −0.327191 −0.163596 0.986527i \(-0.552309\pi\)
−0.163596 + 0.986527i \(0.552309\pi\)
\(152\) 0 0
\(153\) 862.459 0.455723
\(154\) 0 0
\(155\) 826.043 0.428060
\(156\) 0 0
\(157\) 1119.43 0.569045 0.284523 0.958669i \(-0.408165\pi\)
0.284523 + 0.958669i \(0.408165\pi\)
\(158\) 0 0
\(159\) −883.839 −0.440836
\(160\) 0 0
\(161\) −559.776 −0.274016
\(162\) 0 0
\(163\) 2794.13 1.34266 0.671328 0.741160i \(-0.265724\pi\)
0.671328 + 0.741160i \(0.265724\pi\)
\(164\) 0 0
\(165\) 24.4449 0.0115335
\(166\) 0 0
\(167\) −2676.11 −1.24002 −0.620010 0.784594i \(-0.712871\pi\)
−0.620010 + 0.784594i \(0.712871\pi\)
\(168\) 0 0
\(169\) 5135.39 2.33746
\(170\) 0 0
\(171\) −3056.55 −1.36690
\(172\) 0 0
\(173\) −60.7346 −0.0266911 −0.0133456 0.999911i \(-0.504248\pi\)
−0.0133456 + 0.999911i \(0.504248\pi\)
\(174\) 0 0
\(175\) 577.443 0.249432
\(176\) 0 0
\(177\) −659.026 −0.279861
\(178\) 0 0
\(179\) 862.735 0.360245 0.180123 0.983644i \(-0.442351\pi\)
0.180123 + 0.983644i \(0.442351\pi\)
\(180\) 0 0
\(181\) 766.840 0.314910 0.157455 0.987526i \(-0.449671\pi\)
0.157455 + 0.987526i \(0.449671\pi\)
\(182\) 0 0
\(183\) 88.9365 0.0359256
\(184\) 0 0
\(185\) −1080.84 −0.429539
\(186\) 0 0
\(187\) 54.7018 0.0213914
\(188\) 0 0
\(189\) −1956.37 −0.752936
\(190\) 0 0
\(191\) −3786.27 −1.43437 −0.717186 0.696882i \(-0.754570\pi\)
−0.717186 + 0.696882i \(0.754570\pi\)
\(192\) 0 0
\(193\) 2713.36 1.01198 0.505990 0.862539i \(-0.331127\pi\)
0.505990 + 0.862539i \(0.331127\pi\)
\(194\) 0 0
\(195\) −1343.18 −0.493269
\(196\) 0 0
\(197\) −5275.02 −1.90777 −0.953883 0.300180i \(-0.902953\pi\)
−0.953883 + 0.300180i \(0.902953\pi\)
\(198\) 0 0
\(199\) −2689.93 −0.958212 −0.479106 0.877757i \(-0.659039\pi\)
−0.479106 + 0.877757i \(0.659039\pi\)
\(200\) 0 0
\(201\) −806.697 −0.283085
\(202\) 0 0
\(203\) −3186.91 −1.10186
\(204\) 0 0
\(205\) 358.920 0.122283
\(206\) 0 0
\(207\) −565.120 −0.189752
\(208\) 0 0
\(209\) −193.863 −0.0641617
\(210\) 0 0
\(211\) 2900.32 0.946285 0.473143 0.880986i \(-0.343120\pi\)
0.473143 + 0.880986i \(0.343120\pi\)
\(212\) 0 0
\(213\) −652.309 −0.209838
\(214\) 0 0
\(215\) 2294.34 0.727780
\(216\) 0 0
\(217\) −1997.74 −0.624957
\(218\) 0 0
\(219\) −914.002 −0.282021
\(220\) 0 0
\(221\) −3005.72 −0.914871
\(222\) 0 0
\(223\) −6307.92 −1.89421 −0.947106 0.320920i \(-0.896008\pi\)
−0.947106 + 0.320920i \(0.896008\pi\)
\(224\) 0 0
\(225\) 582.956 0.172728
\(226\) 0 0
\(227\) 5454.59 1.59486 0.797431 0.603410i \(-0.206192\pi\)
0.797431 + 0.603410i \(0.206192\pi\)
\(228\) 0 0
\(229\) 1535.31 0.443039 0.221520 0.975156i \(-0.428898\pi\)
0.221520 + 0.975156i \(0.428898\pi\)
\(230\) 0 0
\(231\) −59.1189 −0.0168387
\(232\) 0 0
\(233\) −2808.98 −0.789795 −0.394897 0.918725i \(-0.629220\pi\)
−0.394897 + 0.918725i \(0.629220\pi\)
\(234\) 0 0
\(235\) 2697.73 0.748854
\(236\) 0 0
\(237\) 928.966 0.254611
\(238\) 0 0
\(239\) 3051.86 0.825978 0.412989 0.910736i \(-0.364485\pi\)
0.412989 + 0.910736i \(0.364485\pi\)
\(240\) 0 0
\(241\) 994.590 0.265839 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(242\) 0 0
\(243\) −3009.09 −0.794377
\(244\) 0 0
\(245\) 2509.25 0.654328
\(246\) 0 0
\(247\) 10652.3 2.74408
\(248\) 0 0
\(249\) 539.427 0.137288
\(250\) 0 0
\(251\) −6960.36 −1.75034 −0.875168 0.483820i \(-0.839249\pi\)
−0.875168 + 0.483820i \(0.839249\pi\)
\(252\) 0 0
\(253\) −35.8430 −0.00890683
\(254\) 0 0
\(255\) 550.603 0.135216
\(256\) 0 0
\(257\) 528.738 0.128334 0.0641669 0.997939i \(-0.479561\pi\)
0.0641669 + 0.997939i \(0.479561\pi\)
\(258\) 0 0
\(259\) 2613.95 0.627116
\(260\) 0 0
\(261\) −3217.33 −0.763019
\(262\) 0 0
\(263\) 620.103 0.145389 0.0726943 0.997354i \(-0.476840\pi\)
0.0726943 + 0.997354i \(0.476840\pi\)
\(264\) 0 0
\(265\) 5706.35 1.32279
\(266\) 0 0
\(267\) 502.820 0.115251
\(268\) 0 0
\(269\) −2448.16 −0.554895 −0.277448 0.960741i \(-0.589488\pi\)
−0.277448 + 0.960741i \(0.589488\pi\)
\(270\) 0 0
\(271\) 904.980 0.202855 0.101427 0.994843i \(-0.467659\pi\)
0.101427 + 0.994843i \(0.467659\pi\)
\(272\) 0 0
\(273\) 3248.43 0.720160
\(274\) 0 0
\(275\) 36.9742 0.00810774
\(276\) 0 0
\(277\) 5045.12 1.09434 0.547169 0.837022i \(-0.315705\pi\)
0.547169 + 0.837022i \(0.315705\pi\)
\(278\) 0 0
\(279\) −2016.82 −0.432773
\(280\) 0 0
\(281\) 3192.77 0.677811 0.338905 0.940820i \(-0.389943\pi\)
0.338905 + 0.940820i \(0.389943\pi\)
\(282\) 0 0
\(283\) −239.398 −0.0502853 −0.0251426 0.999684i \(-0.508004\pi\)
−0.0251426 + 0.999684i \(0.508004\pi\)
\(284\) 0 0
\(285\) −1951.34 −0.405569
\(286\) 0 0
\(287\) −868.030 −0.178530
\(288\) 0 0
\(289\) −3680.89 −0.749213
\(290\) 0 0
\(291\) 1718.11 0.346108
\(292\) 0 0
\(293\) 4584.70 0.914134 0.457067 0.889432i \(-0.348900\pi\)
0.457067 + 0.889432i \(0.348900\pi\)
\(294\) 0 0
\(295\) 4254.88 0.839759
\(296\) 0 0
\(297\) −125.268 −0.0244741
\(298\) 0 0
\(299\) 1969.48 0.380929
\(300\) 0 0
\(301\) −5548.75 −1.06254
\(302\) 0 0
\(303\) 438.640 0.0831657
\(304\) 0 0
\(305\) −574.203 −0.107799
\(306\) 0 0
\(307\) −483.762 −0.0899340 −0.0449670 0.998988i \(-0.514318\pi\)
−0.0449670 + 0.998988i \(0.514318\pi\)
\(308\) 0 0
\(309\) 945.611 0.174090
\(310\) 0 0
\(311\) −1131.39 −0.206286 −0.103143 0.994667i \(-0.532890\pi\)
−0.103143 + 0.994667i \(0.532890\pi\)
\(312\) 0 0
\(313\) 8678.30 1.56718 0.783589 0.621280i \(-0.213387\pi\)
0.783589 + 0.621280i \(0.213387\pi\)
\(314\) 0 0
\(315\) 6017.95 1.07642
\(316\) 0 0
\(317\) 5835.70 1.03396 0.516981 0.855997i \(-0.327056\pi\)
0.516981 + 0.855997i \(0.327056\pi\)
\(318\) 0 0
\(319\) −204.061 −0.0358157
\(320\) 0 0
\(321\) 1181.99 0.205522
\(322\) 0 0
\(323\) −4366.61 −0.752213
\(324\) 0 0
\(325\) −2031.64 −0.346754
\(326\) 0 0
\(327\) −2697.09 −0.456115
\(328\) 0 0
\(329\) −6524.33 −1.09331
\(330\) 0 0
\(331\) 4804.86 0.797882 0.398941 0.916977i \(-0.369378\pi\)
0.398941 + 0.916977i \(0.369378\pi\)
\(332\) 0 0
\(333\) 2638.91 0.434268
\(334\) 0 0
\(335\) 5208.30 0.849433
\(336\) 0 0
\(337\) 308.081 0.0497989 0.0248995 0.999690i \(-0.492073\pi\)
0.0248995 + 0.999690i \(0.492073\pi\)
\(338\) 0 0
\(339\) −2669.21 −0.427645
\(340\) 0 0
\(341\) −127.917 −0.0203141
\(342\) 0 0
\(343\) 2279.45 0.358831
\(344\) 0 0
\(345\) −360.779 −0.0563005
\(346\) 0 0
\(347\) −2133.10 −0.330003 −0.165001 0.986293i \(-0.552763\pi\)
−0.165001 + 0.986293i \(0.552763\pi\)
\(348\) 0 0
\(349\) −10534.3 −1.61573 −0.807864 0.589369i \(-0.799376\pi\)
−0.807864 + 0.589369i \(0.799376\pi\)
\(350\) 0 0
\(351\) 6883.15 1.04671
\(352\) 0 0
\(353\) 3551.48 0.535485 0.267742 0.963491i \(-0.413722\pi\)
0.267742 + 0.963491i \(0.413722\pi\)
\(354\) 0 0
\(355\) 4211.52 0.629645
\(356\) 0 0
\(357\) −1331.61 −0.197412
\(358\) 0 0
\(359\) −11547.3 −1.69761 −0.848804 0.528707i \(-0.822677\pi\)
−0.848804 + 0.528707i \(0.822677\pi\)
\(360\) 0 0
\(361\) 8616.28 1.25620
\(362\) 0 0
\(363\) 2070.85 0.299425
\(364\) 0 0
\(365\) 5901.09 0.846239
\(366\) 0 0
\(367\) 7553.39 1.07434 0.537171 0.843473i \(-0.319493\pi\)
0.537171 + 0.843473i \(0.319493\pi\)
\(368\) 0 0
\(369\) −876.317 −0.123629
\(370\) 0 0
\(371\) −13800.5 −1.93123
\(372\) 0 0
\(373\) −7766.30 −1.07808 −0.539040 0.842280i \(-0.681213\pi\)
−0.539040 + 0.842280i \(0.681213\pi\)
\(374\) 0 0
\(375\) 2332.92 0.321257
\(376\) 0 0
\(377\) 11212.6 1.53177
\(378\) 0 0
\(379\) 1196.96 0.162226 0.0811132 0.996705i \(-0.474152\pi\)
0.0811132 + 0.996705i \(0.474152\pi\)
\(380\) 0 0
\(381\) 1571.84 0.211359
\(382\) 0 0
\(383\) −489.495 −0.0653055 −0.0326528 0.999467i \(-0.510396\pi\)
−0.0326528 + 0.999467i \(0.510396\pi\)
\(384\) 0 0
\(385\) 381.691 0.0505266
\(386\) 0 0
\(387\) −5601.72 −0.735792
\(388\) 0 0
\(389\) 4892.37 0.637668 0.318834 0.947810i \(-0.396709\pi\)
0.318834 + 0.947810i \(0.396709\pi\)
\(390\) 0 0
\(391\) −807.334 −0.104421
\(392\) 0 0
\(393\) −527.801 −0.0677456
\(394\) 0 0
\(395\) −5997.71 −0.763993
\(396\) 0 0
\(397\) 9231.40 1.16703 0.583515 0.812102i \(-0.301677\pi\)
0.583515 + 0.812102i \(0.301677\pi\)
\(398\) 0 0
\(399\) 4719.21 0.592120
\(400\) 0 0
\(401\) −4350.38 −0.541765 −0.270883 0.962612i \(-0.587315\pi\)
−0.270883 + 0.962612i \(0.587315\pi\)
\(402\) 0 0
\(403\) 7028.72 0.868798
\(404\) 0 0
\(405\) 5415.26 0.664410
\(406\) 0 0
\(407\) 167.374 0.0203843
\(408\) 0 0
\(409\) −2058.13 −0.248822 −0.124411 0.992231i \(-0.539704\pi\)
−0.124411 + 0.992231i \(0.539704\pi\)
\(410\) 0 0
\(411\) −532.226 −0.0638753
\(412\) 0 0
\(413\) −10290.2 −1.22603
\(414\) 0 0
\(415\) −3482.72 −0.411951
\(416\) 0 0
\(417\) −795.603 −0.0934313
\(418\) 0 0
\(419\) 15060.4 1.75596 0.877982 0.478694i \(-0.158890\pi\)
0.877982 + 0.478694i \(0.158890\pi\)
\(420\) 0 0
\(421\) 1109.01 0.128385 0.0641923 0.997938i \(-0.479553\pi\)
0.0641923 + 0.997938i \(0.479553\pi\)
\(422\) 0 0
\(423\) −6586.62 −0.757098
\(424\) 0 0
\(425\) 832.815 0.0950528
\(426\) 0 0
\(427\) 1388.68 0.157384
\(428\) 0 0
\(429\) 208.000 0.0234087
\(430\) 0 0
\(431\) 7453.68 0.833019 0.416509 0.909131i \(-0.363253\pi\)
0.416509 + 0.909131i \(0.363253\pi\)
\(432\) 0 0
\(433\) −3360.65 −0.372985 −0.186493 0.982456i \(-0.559712\pi\)
−0.186493 + 0.982456i \(0.559712\pi\)
\(434\) 0 0
\(435\) −2053.98 −0.226392
\(436\) 0 0
\(437\) 2861.19 0.313202
\(438\) 0 0
\(439\) −11073.4 −1.20389 −0.601943 0.798539i \(-0.705607\pi\)
−0.601943 + 0.798539i \(0.705607\pi\)
\(440\) 0 0
\(441\) −6126.45 −0.661532
\(442\) 0 0
\(443\) 15911.1 1.70646 0.853229 0.521536i \(-0.174641\pi\)
0.853229 + 0.521536i \(0.174641\pi\)
\(444\) 0 0
\(445\) −3246.37 −0.345826
\(446\) 0 0
\(447\) 3101.10 0.328136
\(448\) 0 0
\(449\) −14842.1 −1.56001 −0.780003 0.625776i \(-0.784783\pi\)
−0.780003 + 0.625776i \(0.784783\pi\)
\(450\) 0 0
\(451\) −55.5807 −0.00580309
\(452\) 0 0
\(453\) 946.304 0.0981484
\(454\) 0 0
\(455\) −20972.9 −2.16093
\(456\) 0 0
\(457\) 14903.8 1.52554 0.762771 0.646669i \(-0.223839\pi\)
0.762771 + 0.646669i \(0.223839\pi\)
\(458\) 0 0
\(459\) −2821.56 −0.286927
\(460\) 0 0
\(461\) 9271.90 0.936736 0.468368 0.883533i \(-0.344842\pi\)
0.468368 + 0.883533i \(0.344842\pi\)
\(462\) 0 0
\(463\) 6157.42 0.618055 0.309028 0.951053i \(-0.399996\pi\)
0.309028 + 0.951053i \(0.399996\pi\)
\(464\) 0 0
\(465\) −1287.56 −0.128406
\(466\) 0 0
\(467\) −3030.18 −0.300257 −0.150129 0.988666i \(-0.547969\pi\)
−0.150129 + 0.988666i \(0.547969\pi\)
\(468\) 0 0
\(469\) −12596.0 −1.24015
\(470\) 0 0
\(471\) −1744.86 −0.170698
\(472\) 0 0
\(473\) −355.291 −0.0345376
\(474\) 0 0
\(475\) −2951.50 −0.285103
\(476\) 0 0
\(477\) −13932.3 −1.33735
\(478\) 0 0
\(479\) 11390.0 1.08648 0.543240 0.839577i \(-0.317197\pi\)
0.543240 + 0.839577i \(0.317197\pi\)
\(480\) 0 0
\(481\) −9196.74 −0.871799
\(482\) 0 0
\(483\) 872.525 0.0821972
\(484\) 0 0
\(485\) −11092.7 −1.03854
\(486\) 0 0
\(487\) 6027.22 0.560820 0.280410 0.959880i \(-0.409530\pi\)
0.280410 + 0.959880i \(0.409530\pi\)
\(488\) 0 0
\(489\) −4355.22 −0.402760
\(490\) 0 0
\(491\) −6253.16 −0.574748 −0.287374 0.957818i \(-0.592782\pi\)
−0.287374 + 0.957818i \(0.592782\pi\)
\(492\) 0 0
\(493\) −4596.30 −0.419892
\(494\) 0 0
\(495\) 385.335 0.0349889
\(496\) 0 0
\(497\) −10185.3 −0.919266
\(498\) 0 0
\(499\) 12372.4 1.10995 0.554973 0.831868i \(-0.312729\pi\)
0.554973 + 0.831868i \(0.312729\pi\)
\(500\) 0 0
\(501\) 4171.26 0.371972
\(502\) 0 0
\(503\) −15826.3 −1.40290 −0.701450 0.712719i \(-0.747463\pi\)
−0.701450 + 0.712719i \(0.747463\pi\)
\(504\) 0 0
\(505\) −2832.00 −0.249549
\(506\) 0 0
\(507\) −8004.56 −0.701173
\(508\) 0 0
\(509\) 1293.91 0.112675 0.0563373 0.998412i \(-0.482058\pi\)
0.0563373 + 0.998412i \(0.482058\pi\)
\(510\) 0 0
\(511\) −14271.5 −1.23549
\(512\) 0 0
\(513\) 9999.63 0.860613
\(514\) 0 0
\(515\) −6105.18 −0.522381
\(516\) 0 0
\(517\) −417.759 −0.0355377
\(518\) 0 0
\(519\) 94.6672 0.00800661
\(520\) 0 0
\(521\) −16165.7 −1.35937 −0.679684 0.733505i \(-0.737883\pi\)
−0.679684 + 0.733505i \(0.737883\pi\)
\(522\) 0 0
\(523\) −19513.2 −1.63146 −0.815729 0.578435i \(-0.803664\pi\)
−0.815729 + 0.578435i \(0.803664\pi\)
\(524\) 0 0
\(525\) −900.063 −0.0748228
\(526\) 0 0
\(527\) −2881.24 −0.238157
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −10388.5 −0.849004
\(532\) 0 0
\(533\) 3054.02 0.248188
\(534\) 0 0
\(535\) −7631.34 −0.616694
\(536\) 0 0
\(537\) −1344.75 −0.108064
\(538\) 0 0
\(539\) −388.572 −0.0310519
\(540\) 0 0
\(541\) −3124.23 −0.248283 −0.124141 0.992265i \(-0.539618\pi\)
−0.124141 + 0.992265i \(0.539618\pi\)
\(542\) 0 0
\(543\) −1195.28 −0.0944645
\(544\) 0 0
\(545\) 17413.3 1.36863
\(546\) 0 0
\(547\) 1818.46 0.142142 0.0710709 0.997471i \(-0.477358\pi\)
0.0710709 + 0.997471i \(0.477358\pi\)
\(548\) 0 0
\(549\) 1401.94 0.108986
\(550\) 0 0
\(551\) 16289.3 1.25943
\(552\) 0 0
\(553\) 14505.2 1.11541
\(554\) 0 0
\(555\) 1684.70 0.128850
\(556\) 0 0
\(557\) 20165.9 1.53404 0.767018 0.641626i \(-0.221740\pi\)
0.767018 + 0.641626i \(0.221740\pi\)
\(558\) 0 0
\(559\) 19522.3 1.47711
\(560\) 0 0
\(561\) −85.2639 −0.00641683
\(562\) 0 0
\(563\) 3770.72 0.282268 0.141134 0.989991i \(-0.454925\pi\)
0.141134 + 0.989991i \(0.454925\pi\)
\(564\) 0 0
\(565\) 17233.3 1.28320
\(566\) 0 0
\(567\) −13096.5 −0.970022
\(568\) 0 0
\(569\) −23371.9 −1.72197 −0.860986 0.508629i \(-0.830152\pi\)
−0.860986 + 0.508629i \(0.830152\pi\)
\(570\) 0 0
\(571\) −5535.00 −0.405661 −0.202830 0.979214i \(-0.565014\pi\)
−0.202830 + 0.979214i \(0.565014\pi\)
\(572\) 0 0
\(573\) 5901.67 0.430272
\(574\) 0 0
\(575\) −545.696 −0.0395776
\(576\) 0 0
\(577\) 8409.03 0.606711 0.303356 0.952877i \(-0.401893\pi\)
0.303356 + 0.952877i \(0.401893\pi\)
\(578\) 0 0
\(579\) −4229.33 −0.303567
\(580\) 0 0
\(581\) 8422.78 0.601438
\(582\) 0 0
\(583\) −883.660 −0.0627744
\(584\) 0 0
\(585\) −21173.1 −1.49641
\(586\) 0 0
\(587\) −22796.7 −1.60293 −0.801467 0.598039i \(-0.795947\pi\)
−0.801467 + 0.598039i \(0.795947\pi\)
\(588\) 0 0
\(589\) 10211.1 0.714331
\(590\) 0 0
\(591\) 8222.20 0.572278
\(592\) 0 0
\(593\) −22303.3 −1.54450 −0.772249 0.635320i \(-0.780868\pi\)
−0.772249 + 0.635320i \(0.780868\pi\)
\(594\) 0 0
\(595\) 8597.28 0.592360
\(596\) 0 0
\(597\) 4192.81 0.287437
\(598\) 0 0
\(599\) −2650.30 −0.180782 −0.0903910 0.995906i \(-0.528812\pi\)
−0.0903910 + 0.995906i \(0.528812\pi\)
\(600\) 0 0
\(601\) 16837.0 1.14275 0.571376 0.820688i \(-0.306410\pi\)
0.571376 + 0.820688i \(0.306410\pi\)
\(602\) 0 0
\(603\) −12716.3 −0.858784
\(604\) 0 0
\(605\) −13370.1 −0.898465
\(606\) 0 0
\(607\) 18425.8 1.23209 0.616046 0.787711i \(-0.288734\pi\)
0.616046 + 0.787711i \(0.288734\pi\)
\(608\) 0 0
\(609\) 4967.44 0.330527
\(610\) 0 0
\(611\) 22954.7 1.51988
\(612\) 0 0
\(613\) −15686.0 −1.03352 −0.516762 0.856129i \(-0.672863\pi\)
−0.516762 + 0.856129i \(0.672863\pi\)
\(614\) 0 0
\(615\) −559.450 −0.0366816
\(616\) 0 0
\(617\) −19489.5 −1.27167 −0.635833 0.771827i \(-0.719343\pi\)
−0.635833 + 0.771827i \(0.719343\pi\)
\(618\) 0 0
\(619\) −7827.43 −0.508257 −0.254128 0.967171i \(-0.581789\pi\)
−0.254128 + 0.967171i \(0.581789\pi\)
\(620\) 0 0
\(621\) 1848.81 0.119469
\(622\) 0 0
\(623\) 7851.18 0.504897
\(624\) 0 0
\(625\) −12096.3 −0.774166
\(626\) 0 0
\(627\) 302.175 0.0192468
\(628\) 0 0
\(629\) 3769.96 0.238979
\(630\) 0 0
\(631\) −30686.2 −1.93597 −0.967986 0.251003i \(-0.919240\pi\)
−0.967986 + 0.251003i \(0.919240\pi\)
\(632\) 0 0
\(633\) −4520.74 −0.283860
\(634\) 0 0
\(635\) −10148.3 −0.634210
\(636\) 0 0
\(637\) 21351.0 1.32803
\(638\) 0 0
\(639\) −10282.6 −0.636577
\(640\) 0 0
\(641\) −26453.5 −1.63003 −0.815016 0.579439i \(-0.803272\pi\)
−0.815016 + 0.579439i \(0.803272\pi\)
\(642\) 0 0
\(643\) 19559.5 1.19961 0.599807 0.800145i \(-0.295244\pi\)
0.599807 + 0.800145i \(0.295244\pi\)
\(644\) 0 0
\(645\) −3576.20 −0.218314
\(646\) 0 0
\(647\) 7463.15 0.453488 0.226744 0.973954i \(-0.427192\pi\)
0.226744 + 0.973954i \(0.427192\pi\)
\(648\) 0 0
\(649\) −658.892 −0.0398518
\(650\) 0 0
\(651\) 3113.89 0.187470
\(652\) 0 0
\(653\) 3667.38 0.219779 0.109890 0.993944i \(-0.464950\pi\)
0.109890 + 0.993944i \(0.464950\pi\)
\(654\) 0 0
\(655\) 3407.65 0.203279
\(656\) 0 0
\(657\) −14407.7 −0.855555
\(658\) 0 0
\(659\) −11117.2 −0.657155 −0.328578 0.944477i \(-0.606569\pi\)
−0.328578 + 0.944477i \(0.606569\pi\)
\(660\) 0 0
\(661\) 10886.9 0.640622 0.320311 0.947312i \(-0.396213\pi\)
0.320311 + 0.947312i \(0.396213\pi\)
\(662\) 0 0
\(663\) 4685.03 0.274436
\(664\) 0 0
\(665\) −30468.8 −1.77673
\(666\) 0 0
\(667\) 3011.69 0.174832
\(668\) 0 0
\(669\) 9832.18 0.568212
\(670\) 0 0
\(671\) 88.9186 0.00511574
\(672\) 0 0
\(673\) −5441.92 −0.311695 −0.155848 0.987781i \(-0.549811\pi\)
−0.155848 + 0.987781i \(0.549811\pi\)
\(674\) 0 0
\(675\) −1907.16 −0.108751
\(676\) 0 0
\(677\) 28579.1 1.62243 0.811215 0.584749i \(-0.198807\pi\)
0.811215 + 0.584749i \(0.198807\pi\)
\(678\) 0 0
\(679\) 26827.1 1.51625
\(680\) 0 0
\(681\) −8502.09 −0.478415
\(682\) 0 0
\(683\) 26971.1 1.51101 0.755504 0.655144i \(-0.227392\pi\)
0.755504 + 0.655144i \(0.227392\pi\)
\(684\) 0 0
\(685\) 3436.22 0.191666
\(686\) 0 0
\(687\) −2393.09 −0.132900
\(688\) 0 0
\(689\) 48554.8 2.68475
\(690\) 0 0
\(691\) 27966.0 1.53962 0.769810 0.638273i \(-0.220351\pi\)
0.769810 + 0.638273i \(0.220351\pi\)
\(692\) 0 0
\(693\) −931.913 −0.0510829
\(694\) 0 0
\(695\) 5136.67 0.280353
\(696\) 0 0
\(697\) −1251.91 −0.0680338
\(698\) 0 0
\(699\) 4378.36 0.236917
\(700\) 0 0
\(701\) 2681.30 0.144467 0.0722336 0.997388i \(-0.476987\pi\)
0.0722336 + 0.997388i \(0.476987\pi\)
\(702\) 0 0
\(703\) −13360.7 −0.716799
\(704\) 0 0
\(705\) −4204.97 −0.224636
\(706\) 0 0
\(707\) 6849.06 0.364336
\(708\) 0 0
\(709\) 31519.3 1.66958 0.834790 0.550569i \(-0.185589\pi\)
0.834790 + 0.550569i \(0.185589\pi\)
\(710\) 0 0
\(711\) 14643.6 0.772404
\(712\) 0 0
\(713\) 1887.91 0.0991624
\(714\) 0 0
\(715\) −1342.91 −0.0702407
\(716\) 0 0
\(717\) −4756.95 −0.247771
\(718\) 0 0
\(719\) 5550.14 0.287880 0.143940 0.989586i \(-0.454023\pi\)
0.143940 + 0.989586i \(0.454023\pi\)
\(720\) 0 0
\(721\) 14765.1 0.762662
\(722\) 0 0
\(723\) −1550.27 −0.0797444
\(724\) 0 0
\(725\) −3106.75 −0.159147
\(726\) 0 0
\(727\) −9562.34 −0.487823 −0.243912 0.969797i \(-0.578431\pi\)
−0.243912 + 0.969797i \(0.578431\pi\)
\(728\) 0 0
\(729\) −9838.64 −0.499855
\(730\) 0 0
\(731\) −8002.65 −0.404909
\(732\) 0 0
\(733\) 15084.1 0.760087 0.380043 0.924969i \(-0.375909\pi\)
0.380043 + 0.924969i \(0.375909\pi\)
\(734\) 0 0
\(735\) −3911.19 −0.196281
\(736\) 0 0
\(737\) −806.534 −0.0403108
\(738\) 0 0
\(739\) 14657.3 0.729607 0.364803 0.931085i \(-0.381136\pi\)
0.364803 + 0.931085i \(0.381136\pi\)
\(740\) 0 0
\(741\) −16603.7 −0.823149
\(742\) 0 0
\(743\) −25211.2 −1.24483 −0.622416 0.782687i \(-0.713849\pi\)
−0.622416 + 0.782687i \(0.713849\pi\)
\(744\) 0 0
\(745\) −20021.7 −0.984616
\(746\) 0 0
\(747\) 8503.19 0.416487
\(748\) 0 0
\(749\) 18456.0 0.900358
\(750\) 0 0
\(751\) −16991.7 −0.825614 −0.412807 0.910818i \(-0.635452\pi\)
−0.412807 + 0.910818i \(0.635452\pi\)
\(752\) 0 0
\(753\) 10849.1 0.525053
\(754\) 0 0
\(755\) −6109.65 −0.294507
\(756\) 0 0
\(757\) 27649.0 1.32750 0.663751 0.747954i \(-0.268964\pi\)
0.663751 + 0.747954i \(0.268964\pi\)
\(758\) 0 0
\(759\) 55.8686 0.00267181
\(760\) 0 0
\(761\) 18471.8 0.879896 0.439948 0.898023i \(-0.354997\pi\)
0.439948 + 0.898023i \(0.354997\pi\)
\(762\) 0 0
\(763\) −42113.2 −1.99817
\(764\) 0 0
\(765\) 8679.36 0.410200
\(766\) 0 0
\(767\) 36204.4 1.70439
\(768\) 0 0
\(769\) −2326.91 −0.109117 −0.0545583 0.998511i \(-0.517375\pi\)
−0.0545583 + 0.998511i \(0.517375\pi\)
\(770\) 0 0
\(771\) −824.146 −0.0384966
\(772\) 0 0
\(773\) −40624.7 −1.89026 −0.945129 0.326698i \(-0.894064\pi\)
−0.945129 + 0.326698i \(0.894064\pi\)
\(774\) 0 0
\(775\) −1947.49 −0.0902659
\(776\) 0 0
\(777\) −4074.37 −0.188118
\(778\) 0 0
\(779\) 4436.78 0.204062
\(780\) 0 0
\(781\) −652.177 −0.0298806
\(782\) 0 0
\(783\) 10525.6 0.480402
\(784\) 0 0
\(785\) 11265.4 0.512202
\(786\) 0 0
\(787\) 10522.2 0.476588 0.238294 0.971193i \(-0.423412\pi\)
0.238294 + 0.971193i \(0.423412\pi\)
\(788\) 0 0
\(789\) −966.558 −0.0436126
\(790\) 0 0
\(791\) −41677.9 −1.87345
\(792\) 0 0
\(793\) −4885.84 −0.218791
\(794\) 0 0
\(795\) −8894.51 −0.396800
\(796\) 0 0
\(797\) −34463.9 −1.53171 −0.765856 0.643013i \(-0.777684\pi\)
−0.765856 + 0.643013i \(0.777684\pi\)
\(798\) 0 0
\(799\) −9409.69 −0.416634
\(800\) 0 0
\(801\) 7926.14 0.349634
\(802\) 0 0
\(803\) −913.817 −0.0401593
\(804\) 0 0
\(805\) −5633.31 −0.246643
\(806\) 0 0
\(807\) 3815.95 0.166453
\(808\) 0 0
\(809\) 4092.42 0.177851 0.0889257 0.996038i \(-0.471657\pi\)
0.0889257 + 0.996038i \(0.471657\pi\)
\(810\) 0 0
\(811\) 5684.59 0.246132 0.123066 0.992398i \(-0.460727\pi\)
0.123066 + 0.992398i \(0.460727\pi\)
\(812\) 0 0
\(813\) −1410.60 −0.0608509
\(814\) 0 0
\(815\) 28118.7 1.20853
\(816\) 0 0
\(817\) 28361.4 1.21449
\(818\) 0 0
\(819\) 51206.2 2.18472
\(820\) 0 0
\(821\) −4718.22 −0.200569 −0.100284 0.994959i \(-0.531975\pi\)
−0.100284 + 0.994959i \(0.531975\pi\)
\(822\) 0 0
\(823\) 26909.4 1.13974 0.569868 0.821736i \(-0.306994\pi\)
0.569868 + 0.821736i \(0.306994\pi\)
\(824\) 0 0
\(825\) −57.6319 −0.00243210
\(826\) 0 0
\(827\) 14401.1 0.605532 0.302766 0.953065i \(-0.402090\pi\)
0.302766 + 0.953065i \(0.402090\pi\)
\(828\) 0 0
\(829\) −16061.0 −0.672883 −0.336442 0.941704i \(-0.609223\pi\)
−0.336442 + 0.941704i \(0.609223\pi\)
\(830\) 0 0
\(831\) −7863.85 −0.328272
\(832\) 0 0
\(833\) −8752.28 −0.364044
\(834\) 0 0
\(835\) −26931.0 −1.11615
\(836\) 0 0
\(837\) 6598.08 0.272477
\(838\) 0 0
\(839\) −34894.5 −1.43587 −0.717934 0.696112i \(-0.754912\pi\)
−0.717934 + 0.696112i \(0.754912\pi\)
\(840\) 0 0
\(841\) −7242.88 −0.296973
\(842\) 0 0
\(843\) −4976.59 −0.203325
\(844\) 0 0
\(845\) 51680.0 2.10396
\(846\) 0 0
\(847\) 32334.9 1.31173
\(848\) 0 0
\(849\) 373.151 0.0150842
\(850\) 0 0
\(851\) −2470.24 −0.0995049
\(852\) 0 0
\(853\) −26275.4 −1.05469 −0.527346 0.849651i \(-0.676813\pi\)
−0.527346 + 0.849651i \(0.676813\pi\)
\(854\) 0 0
\(855\) −30759.6 −1.23036
\(856\) 0 0
\(857\) 25459.0 1.01478 0.507389 0.861717i \(-0.330611\pi\)
0.507389 + 0.861717i \(0.330611\pi\)
\(858\) 0 0
\(859\) 1582.86 0.0628715 0.0314357 0.999506i \(-0.489992\pi\)
0.0314357 + 0.999506i \(0.489992\pi\)
\(860\) 0 0
\(861\) 1353.00 0.0535542
\(862\) 0 0
\(863\) 4277.66 0.168729 0.0843645 0.996435i \(-0.473114\pi\)
0.0843645 + 0.996435i \(0.473114\pi\)
\(864\) 0 0
\(865\) −611.202 −0.0240249
\(866\) 0 0
\(867\) 5737.41 0.224744
\(868\) 0 0
\(869\) 928.778 0.0362562
\(870\) 0 0
\(871\) 44316.9 1.72402
\(872\) 0 0
\(873\) 27083.3 1.04998
\(874\) 0 0
\(875\) 36426.9 1.40738
\(876\) 0 0
\(877\) −16453.2 −0.633505 −0.316753 0.948508i \(-0.602593\pi\)
−0.316753 + 0.948508i \(0.602593\pi\)
\(878\) 0 0
\(879\) −7146.20 −0.274215
\(880\) 0 0
\(881\) −3452.74 −0.132038 −0.0660191 0.997818i \(-0.521030\pi\)
−0.0660191 + 0.997818i \(0.521030\pi\)
\(882\) 0 0
\(883\) −21075.1 −0.803210 −0.401605 0.915813i \(-0.631548\pi\)
−0.401605 + 0.915813i \(0.631548\pi\)
\(884\) 0 0
\(885\) −6632.10 −0.251905
\(886\) 0 0
\(887\) −41611.9 −1.57519 −0.787594 0.616195i \(-0.788673\pi\)
−0.787594 + 0.616195i \(0.788673\pi\)
\(888\) 0 0
\(889\) 24543.2 0.925930
\(890\) 0 0
\(891\) −838.583 −0.0315304
\(892\) 0 0
\(893\) 33347.9 1.24966
\(894\) 0 0
\(895\) 8682.14 0.324259
\(896\) 0 0
\(897\) −3069.83 −0.114268
\(898\) 0 0
\(899\) 10748.2 0.398746
\(900\) 0 0
\(901\) −19903.7 −0.735949
\(902\) 0 0
\(903\) 8648.85 0.318733
\(904\) 0 0
\(905\) 7717.09 0.283453
\(906\) 0 0
\(907\) −3328.73 −0.121862 −0.0609310 0.998142i \(-0.519407\pi\)
−0.0609310 + 0.998142i \(0.519407\pi\)
\(908\) 0 0
\(909\) 6914.45 0.252297
\(910\) 0 0
\(911\) −39768.1 −1.44630 −0.723149 0.690692i \(-0.757306\pi\)
−0.723149 + 0.690692i \(0.757306\pi\)
\(912\) 0 0
\(913\) 539.318 0.0195496
\(914\) 0 0
\(915\) 895.013 0.0323368
\(916\) 0 0
\(917\) −8241.24 −0.296783
\(918\) 0 0
\(919\) 2917.02 0.104705 0.0523524 0.998629i \(-0.483328\pi\)
0.0523524 + 0.998629i \(0.483328\pi\)
\(920\) 0 0
\(921\) 754.041 0.0269777
\(922\) 0 0
\(923\) 35835.4 1.27794
\(924\) 0 0
\(925\) 2548.20 0.0905777
\(926\) 0 0
\(927\) 14906.0 0.528132
\(928\) 0 0
\(929\) −1564.80 −0.0552632 −0.0276316 0.999618i \(-0.508797\pi\)
−0.0276316 + 0.999618i \(0.508797\pi\)
\(930\) 0 0
\(931\) 31018.1 1.09192
\(932\) 0 0
\(933\) 1763.50 0.0618802
\(934\) 0 0
\(935\) 550.491 0.0192545
\(936\) 0 0
\(937\) 21786.7 0.759596 0.379798 0.925069i \(-0.375993\pi\)
0.379798 + 0.925069i \(0.375993\pi\)
\(938\) 0 0
\(939\) −13526.9 −0.470110
\(940\) 0 0
\(941\) −34207.7 −1.18506 −0.592530 0.805549i \(-0.701871\pi\)
−0.592530 + 0.805549i \(0.701871\pi\)
\(942\) 0 0
\(943\) 820.307 0.0283275
\(944\) 0 0
\(945\) −19687.9 −0.677723
\(946\) 0 0
\(947\) −17863.6 −0.612976 −0.306488 0.951875i \(-0.599154\pi\)
−0.306488 + 0.951875i \(0.599154\pi\)
\(948\) 0 0
\(949\) 50211.8 1.71754
\(950\) 0 0
\(951\) −9096.14 −0.310160
\(952\) 0 0
\(953\) −2205.70 −0.0749733 −0.0374867 0.999297i \(-0.511935\pi\)
−0.0374867 + 0.999297i \(0.511935\pi\)
\(954\) 0 0
\(955\) −38103.1 −1.29109
\(956\) 0 0
\(957\) 318.070 0.0107437
\(958\) 0 0
\(959\) −8310.33 −0.279828
\(960\) 0 0
\(961\) −23053.4 −0.773837
\(962\) 0 0
\(963\) 18632.2 0.623484
\(964\) 0 0
\(965\) 27305.9 0.910891
\(966\) 0 0
\(967\) 55599.4 1.84897 0.924487 0.381215i \(-0.124494\pi\)
0.924487 + 0.381215i \(0.124494\pi\)
\(968\) 0 0
\(969\) 6806.26 0.225643
\(970\) 0 0
\(971\) −46743.5 −1.54487 −0.772435 0.635094i \(-0.780961\pi\)
−0.772435 + 0.635094i \(0.780961\pi\)
\(972\) 0 0
\(973\) −12422.8 −0.409308
\(974\) 0 0
\(975\) 3166.72 0.104017
\(976\) 0 0
\(977\) −35978.0 −1.17814 −0.589068 0.808084i \(-0.700505\pi\)
−0.589068 + 0.808084i \(0.700505\pi\)
\(978\) 0 0
\(979\) 502.718 0.0164116
\(980\) 0 0
\(981\) −42515.3 −1.38370
\(982\) 0 0
\(983\) 25329.0 0.821840 0.410920 0.911671i \(-0.365208\pi\)
0.410920 + 0.911671i \(0.365208\pi\)
\(984\) 0 0
\(985\) −53085.2 −1.71719
\(986\) 0 0
\(987\) 10169.5 0.327962
\(988\) 0 0
\(989\) 5243.68 0.168594
\(990\) 0 0
\(991\) 7490.70 0.240111 0.120055 0.992767i \(-0.461693\pi\)
0.120055 + 0.992767i \(0.461693\pi\)
\(992\) 0 0
\(993\) −7489.35 −0.239343
\(994\) 0 0
\(995\) −27070.1 −0.862493
\(996\) 0 0
\(997\) 34489.1 1.09557 0.547784 0.836620i \(-0.315472\pi\)
0.547784 + 0.836620i \(0.315472\pi\)
\(998\) 0 0
\(999\) −8633.27 −0.273418
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 368.4.a.l.1.3 4
4.3 odd 2 23.4.a.b.1.1 4
8.3 odd 2 1472.4.a.y.1.3 4
8.5 even 2 1472.4.a.bf.1.2 4
12.11 even 2 207.4.a.e.1.4 4
20.3 even 4 575.4.b.g.24.8 8
20.7 even 4 575.4.b.g.24.1 8
20.19 odd 2 575.4.a.i.1.4 4
28.27 even 2 1127.4.a.c.1.1 4
92.91 even 2 529.4.a.g.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.1 4 4.3 odd 2
207.4.a.e.1.4 4 12.11 even 2
368.4.a.l.1.3 4 1.1 even 1 trivial
529.4.a.g.1.1 4 92.91 even 2
575.4.a.i.1.4 4 20.19 odd 2
575.4.b.g.24.1 8 20.7 even 4
575.4.b.g.24.8 8 20.3 even 4
1127.4.a.c.1.1 4 28.27 even 2
1472.4.a.y.1.3 4 8.3 odd 2
1472.4.a.bf.1.2 4 8.5 even 2