Properties

Label 3675.2.n
Level $3675$
Weight $2$
Character orbit 3675.n
Rep. character $\chi_{3675}(736,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $824$
Sturm bound $1120$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3675.n (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(1120\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3675, [\chi])\).

Total New Old
Modular forms 2304 824 1480
Cusp forms 2176 824 1352
Eisenstein series 128 0 128

Trace form

\( 824 q - 2 q^{2} - 208 q^{4} - 2 q^{5} + 2 q^{6} - 24 q^{8} - 206 q^{9} + 2 q^{10} - 6 q^{11} - 8 q^{12} - 12 q^{13} - 200 q^{16} - 22 q^{17} + 8 q^{18} + 14 q^{19} + 44 q^{20} + 14 q^{22} - 36 q^{23} - 24 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3675, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3675, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3675, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1225, [\chi])\)\(^{\oplus 2}\)