Properties

Label 3675.1.k
Level $3675$
Weight $1$
Character orbit 3675.k
Rep. character $\chi_{3675}(293,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $24$
Newform subspaces $3$
Sturm bound $560$
Trace bound $12$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(560\)
Trace bound: \(12\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3675, [\chi])\).

Total New Old
Modular forms 128 40 88
Cusp forms 32 24 8
Eisenstein series 96 16 80

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 0 0 0

Trace form

\( 24 q - 24 q^{16} - 24 q^{36} - 24 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3675, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3675.1.k.a 3675.k 105.k $8$ $1.834$ \(\Q(\zeta_{16})\) $D_{8}$ \(\Q(\sqrt{-15}) \) None 3675.1.k.a \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{16}+\zeta_{16}^{3})q^{2}+\zeta_{16}^{2}q^{3}+(\zeta_{16}^{2}+\cdots)q^{4}+\cdots\)
3675.1.k.b 3675.k 105.k $8$ $1.834$ \(\Q(\zeta_{24})\) $D_{6}$ \(\Q(\sqrt{-3}) \) None 525.1.be.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{24}^{9}q^{3}-\zeta_{24}^{6}q^{4}-\zeta_{24}^{6}q^{9}+\cdots\)
3675.1.k.c 3675.k 105.k $8$ $1.834$ \(\Q(\zeta_{16})\) $D_{8}$ \(\Q(\sqrt{-15}) \) None 3675.1.k.a \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{16}+\zeta_{16}^{3})q^{2}-\zeta_{16}^{2}q^{3}+(\zeta_{16}^{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3675, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3675, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 2}\)