Properties

Label 3675.1.f
Level $3675$
Weight $1$
Character orbit 3675.f
Rep. character $\chi_{3675}(2549,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $4$
Sturm bound $560$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(560\)
Trace bound: \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3675, [\chi])\).

Total New Old
Modular forms 72 22 50
Cusp forms 24 12 12
Eisenstein series 48 10 38

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 8 0

Trace form

\( 12 q - 4 q^{4} - 4 q^{9} - 4 q^{16} + 4 q^{36} - 4 q^{39} + 8 q^{46} - 8 q^{51} + 4 q^{64} + 12 q^{79} - 4 q^{81} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3675, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3675.1.f.a 3675.f 15.d $2$ $1.834$ \(\Q(\sqrt{-1}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 525.1.u.a \(0\) \(0\) \(0\) \(0\) \(q+i q^{3}-q^{4}-q^{9}-i q^{12}-i q^{13}+\cdots\)
3675.1.f.b 3675.f 15.d $2$ $1.834$ \(\Q(\sqrt{-1}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 525.1.u.a \(0\) \(0\) \(0\) \(0\) \(q+i q^{3}-q^{4}-q^{9}-i q^{12}-i q^{13}+\cdots\)
3675.1.f.c 3675.f 15.d $4$ $1.834$ \(\Q(\zeta_{8})\) $S_{4}$ None None 3675.1.c.g \(-4\) \(0\) \(0\) \(0\) \(q-q^{2}-\zeta_{8}q^{3}+\zeta_{8}q^{6}+q^{8}+\zeta_{8}^{2}q^{9}+\cdots\)
3675.1.f.d 3675.f 15.d $4$ $1.834$ \(\Q(\zeta_{8})\) $S_{4}$ None None 3675.1.c.g \(4\) \(0\) \(0\) \(0\) \(q+q^{2}-\zeta_{8}q^{3}-\zeta_{8}q^{6}-q^{8}+\zeta_{8}^{2}q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3675, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3675, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 2}\)