Defining parameters
Level: | \( N \) | \(=\) | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3675.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(560\) | ||
Trace bound: | \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3675, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 22 | 50 |
Cusp forms | 24 | 12 | 12 |
Eisenstein series | 48 | 10 | 38 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 8 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3675, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3675.1.f.a | $2$ | $1.834$ | \(\Q(\sqrt{-1}) \) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{3}-q^{4}-q^{9}-i q^{12}-i q^{13}+\cdots\) |
3675.1.f.b | $2$ | $1.834$ | \(\Q(\sqrt{-1}) \) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{3}-q^{4}-q^{9}-i q^{12}-i q^{13}+\cdots\) |
3675.1.f.c | $4$ | $1.834$ | \(\Q(\zeta_{8})\) | $S_{4}$ | None | None | \(-4\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}-\zeta_{8}q^{3}+\zeta_{8}q^{6}+q^{8}+\zeta_{8}^{2}q^{9}+\cdots\) |
3675.1.f.d | $4$ | $1.834$ | \(\Q(\zeta_{8})\) | $S_{4}$ | None | None | \(4\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}-\zeta_{8}q^{3}-\zeta_{8}q^{6}-q^{8}+\zeta_{8}^{2}q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3675, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3675, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 2}\)