Properties

Label 3675.1.cl
Level $3675$
Weight $1$
Character orbit 3675.cl
Rep. character $\chi_{3675}(74,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $24$
Newform subspaces $1$
Sturm bound $560$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.cl (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 735 \)
Character field: \(\Q(\zeta_{42})\)
Newform subspaces: \( 1 \)
Sturm bound: \(560\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3675, [\chi])\).

Total New Old
Modular forms 168 72 96
Cusp forms 24 24 0
Eisenstein series 144 48 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 0 0 0

Trace form

\( 24 q - 2 q^{4} - 2 q^{9} + 2 q^{16} + 2 q^{19} + 2 q^{21} + 4 q^{31} - 4 q^{36} - 26 q^{39} - 2 q^{49} + 26 q^{61} + 4 q^{64} + 4 q^{76} + 2 q^{79} + 2 q^{81} + 4 q^{84} - 2 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3675, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3675.1.cl.a 3675.cl 735.aq $24$ $1.834$ \(\Q(\zeta_{84})\) $D_{21}$ \(\Q(\sqrt{-3}) \) None 3675.1.cg.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{84}^{25}q^{3}-\zeta_{84}^{40}q^{4}-\zeta_{84}^{13}q^{7}+\cdots\)