Properties

Label 3672.1.dp
Level $3672$
Weight $1$
Character orbit 3672.dp
Rep. character $\chi_{3672}(115,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $24$
Newform subspaces $2$
Sturm bound $648$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3672 = 2^{3} \cdot 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3672.dp (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3672 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 2 \)
Sturm bound: \(648\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3672, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 24 24 0
Eisenstein series 48 48 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 0 0 0

Trace form

\( 24 q + O(q^{10}) \) \( 24 q - 6 q^{11} - 6 q^{12} + 6 q^{22} + 6 q^{27} + 6 q^{34} + 24 q^{38} + 6 q^{41} - 12 q^{51} - 6 q^{57} + 12 q^{64} + 12 q^{88} - 12 q^{96} - 6 q^{97} + 12 q^{98} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3672, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3672.1.dp.a 3672.dp 3672.cp $12$ $1.833$ \(\Q(\zeta_{36})\) $D_{36}$ \(\Q(\sqrt{-2}) \) None 3672.1.dp.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{36}^{7}q^{2}+\zeta_{36}^{10}q^{3}+\zeta_{36}^{14}q^{4}+\cdots\)
3672.1.dp.b 3672.dp 3672.cp $12$ $1.833$ \(\Q(\zeta_{36})\) $D_{36}$ \(\Q(\sqrt{-2}) \) None 3672.1.dp.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{36}^{7}q^{2}+\zeta_{36}q^{3}+\zeta_{36}^{14}q^{4}+\cdots\)