Defining parameters
Level: | \( N \) | \(=\) | \( 3672 = 2^{3} \cdot 3^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3672.dp (of order \(36\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3672 \) |
Character field: | \(\Q(\zeta_{36})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(648\) | ||
Trace bound: | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3672, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 72 | 0 |
Cusp forms | 24 | 24 | 0 |
Eisenstein series | 48 | 48 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 24 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3672, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3672.1.dp.a | $12$ | $1.833$ | \(\Q(\zeta_{36})\) | $D_{36}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{36}^{7}q^{2}+\zeta_{36}^{10}q^{3}+\zeta_{36}^{14}q^{4}+\cdots\) |
3672.1.dp.b | $12$ | $1.833$ | \(\Q(\zeta_{36})\) | $D_{36}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{36}^{7}q^{2}+\zeta_{36}q^{3}+\zeta_{36}^{14}q^{4}+\cdots\) |