Properties

Label 3600.2.db
Level $3600$
Weight $2$
Character orbit 3600.db
Rep. character $\chi_{3600}(857,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $0$
Newform subspaces $0$
Sturm bound $1440$
Trace bound $0$

Related objects

Downloads

Learn more

Error: no document with id 201419724 found in table mf_hecke_traces.

Error: table True does not exist

Defining parameters

Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3600.db (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 360 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 0 \)
Sturm bound: \(1440\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3600, [\chi])\).

Total New Old
Modular forms 2976 0 2976
Cusp forms 2784 0 2784
Eisenstein series 192 0 192

Decomposition of \(S_{2}^{\mathrm{old}}(3600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1800, [\chi])\)\(^{\oplus 2}\)