Defining parameters
| Level: | \( N \) | \(=\) | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 360.l (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(216\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(360, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 160 | 8 | 152 |
| Cusp forms | 128 | 8 | 120 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(360, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 360.3.l.a | $4$ | $9.809$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | None | \(0\) | \(0\) | \(0\) | \(-32\) | \(q+\beta _{2}q^{5}+(-8+\beta _{3})q^{7}+(-\beta _{1}-6\beta _{2}+\cdots)q^{11}+\cdots\) |
| 360.3.l.b | $4$ | $9.809$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{5}+\beta _{3}q^{7}+(-\beta _{1}+2\beta _{2})q^{11}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(360, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)