Properties

Label 360.3.l
Level $360$
Weight $3$
Character orbit 360.l
Rep. character $\chi_{360}(161,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $216$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 360.l (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(216\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(360, [\chi])\).

Total New Old
Modular forms 160 8 152
Cusp forms 128 8 120
Eisenstein series 32 0 32

Trace form

\( 8 q - 32 q^{7} + 16 q^{13} + 64 q^{19} - 40 q^{25} - 48 q^{31} - 16 q^{37} + 32 q^{43} - 56 q^{49} + 80 q^{55} + 176 q^{61} + 32 q^{67} - 208 q^{73} - 176 q^{79} - 304 q^{91} + 432 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(360, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
360.3.l.a 360.l 3.b $4$ $9.809$ \(\Q(\sqrt{-2}, \sqrt{-5})\) None 360.3.l.a \(0\) \(0\) \(0\) \(-32\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{5}+(-8+\beta _{3})q^{7}+(-\beta _{1}-6\beta _{2}+\cdots)q^{11}+\cdots\)
360.3.l.b 360.l 3.b $4$ $9.809$ \(\Q(\sqrt{-2}, \sqrt{-5})\) None 360.3.l.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{5}+\beta _{3}q^{7}+(-\beta _{1}+2\beta _{2})q^{11}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(360, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)