Defining parameters
| Level: | \( N \) | \(=\) | \( 35700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 35700.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 93 \) | ||
| Sturm bound: | \(17280\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(35700))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 8712 | 304 | 8408 |
| Cusp forms | 8569 | 304 | 8265 |
| Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(252\) | \(0\) | \(252\) | \(247\) | \(0\) | \(247\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(291\) | \(0\) | \(291\) | \(285\) | \(0\) | \(285\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(288\) | \(0\) | \(288\) | \(282\) | \(0\) | \(282\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(261\) | \(0\) | \(261\) | \(255\) | \(0\) | \(255\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(283\) | \(0\) | \(283\) | \(277\) | \(0\) | \(277\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(264\) | \(0\) | \(264\) | \(258\) | \(0\) | \(258\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(269\) | \(0\) | \(269\) | \(263\) | \(0\) | \(263\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(276\) | \(0\) | \(276\) | \(270\) | \(0\) | \(270\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(258\) | \(0\) | \(258\) | \(252\) | \(0\) | \(252\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(291\) | \(0\) | \(291\) | \(285\) | \(0\) | \(285\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(282\) | \(0\) | \(282\) | \(276\) | \(0\) | \(276\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(261\) | \(0\) | \(261\) | \(255\) | \(0\) | \(255\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(279\) | \(0\) | \(279\) | \(273\) | \(0\) | \(273\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(266\) | \(0\) | \(266\) | \(260\) | \(0\) | \(260\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(273\) | \(0\) | \(273\) | \(267\) | \(0\) | \(267\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(274\) | \(0\) | \(274\) | \(268\) | \(0\) | \(268\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(270\) | \(19\) | \(251\) | \(267\) | \(19\) | \(248\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(276\) | \(17\) | \(259\) | \(273\) | \(17\) | \(256\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(279\) | \(16\) | \(263\) | \(276\) | \(16\) | \(260\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(261\) | \(20\) | \(241\) | \(258\) | \(20\) | \(238\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(269\) | \(20\) | \(249\) | \(266\) | \(20\) | \(246\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(273\) | \(20\) | \(253\) | \(270\) | \(20\) | \(250\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(268\) | \(22\) | \(246\) | \(265\) | \(22\) | \(243\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(276\) | \(18\) | \(258\) | \(273\) | \(18\) | \(255\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(264\) | \(17\) | \(247\) | \(261\) | \(17\) | \(244\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(276\) | \(19\) | \(257\) | \(273\) | \(19\) | \(254\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(285\) | \(20\) | \(265\) | \(282\) | \(20\) | \(262\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(261\) | \(16\) | \(245\) | \(258\) | \(16\) | \(242\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(273\) | \(20\) | \(253\) | \(270\) | \(20\) | \(250\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(271\) | \(20\) | \(251\) | \(268\) | \(20\) | \(248\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(264\) | \(18\) | \(246\) | \(261\) | \(18\) | \(243\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(278\) | \(22\) | \(256\) | \(275\) | \(22\) | \(253\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(4332\) | \(142\) | \(4190\) | \(4261\) | \(142\) | \(4119\) | \(71\) | \(0\) | \(71\) | |||||||
| Minus space | \(-\) | \(4380\) | \(162\) | \(4218\) | \(4308\) | \(162\) | \(4146\) | \(72\) | \(0\) | \(72\) | |||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(35700))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 7 | 17 | |||||||
| 35700.2.a.a | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}-5q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.b | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-4q^{11}-q^{17}-4q^{19}+\cdots\) | |
| 35700.2.a.c | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots\) | |
| 35700.2.a.d | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-3q^{11}+q^{13}-q^{17}+\cdots\) | |
| 35700.2.a.e | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-3q^{11}+6q^{13}+\cdots\) | |
| 35700.2.a.f | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}-2q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.g | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}-2q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.h | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-6q^{13}-q^{17}+6q^{19}+\cdots\) | |
| 35700.2.a.i | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}-2q^{13}+q^{17}+2q^{19}+\cdots\) | |
| 35700.2.a.j | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}+q^{13}-q^{17}+8q^{19}+\cdots\) | |
| 35700.2.a.k | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}+2q^{13}+q^{17}+6q^{19}+\cdots\) | |
| 35700.2.a.l | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}+4q^{13}-q^{17}-8q^{19}+\cdots\) | |
| 35700.2.a.m | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}+4q^{13}-q^{17}-4q^{19}+\cdots\) | |
| 35700.2.a.n | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}+4q^{13}+q^{17}-4q^{19}+\cdots\) | |
| 35700.2.a.o | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}+q^{11}-4q^{13}+q^{17}+\cdots\) | |
| 35700.2.a.p | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}+3q^{11}-2q^{13}+\cdots\) | |
| 35700.2.a.q | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}-6q^{11}-2q^{13}+\cdots\) | |
| 35700.2.a.r | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots\) | |
| 35700.2.a.s | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}-2q^{11}-q^{17}-2q^{19}+\cdots\) | |
| 35700.2.a.t | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{3}+q^{7}+q^{9}+4q^{13}+q^{17}-4q^{19}+\cdots\) | |
| 35700.2.a.u | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}+6q^{13}-q^{17}-2q^{19}+\cdots\) | |
| 35700.2.a.v | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+q^{7}+q^{9}+2q^{11}+6q^{13}+\cdots\) | |
| 35700.2.a.w | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}+3q^{11}-q^{17}-2q^{19}+\cdots\) | |
| 35700.2.a.x | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\) | |
| 35700.2.a.y | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\) | |
| 35700.2.a.z | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}-6q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.ba | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}-4q^{11}-4q^{13}+\cdots\) | |
| 35700.2.a.bb | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{3}-q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.bc | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}-q^{11}+7q^{13}+q^{17}+\cdots\) | |
| 35700.2.a.bd | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}-q^{7}+q^{9}-4q^{13}-q^{17}-4q^{19}+\cdots\) | |
| 35700.2.a.be | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{3}-q^{7}+q^{9}+2q^{11}-6q^{13}+\cdots\) | |
| 35700.2.a.bf | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{3}-q^{7}+q^{9}+2q^{11}-q^{17}-6q^{19}+\cdots\) | |
| 35700.2.a.bg | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{3}-q^{7}+q^{9}+2q^{11}+5q^{13}+\cdots\) | |
| 35700.2.a.bh | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}+3q^{11}+q^{17}-2q^{19}+\cdots\) | |
| 35700.2.a.bi | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.bj | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.bk | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{3}+q^{7}+q^{9}-5q^{11}-2q^{13}+\cdots\) | |
| 35700.2.a.bl | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-5q^{11}-q^{13}+q^{17}+\cdots\) | |
| 35700.2.a.bm | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{7}+q^{9}-4q^{11}-4q^{13}+\cdots\) | |
| 35700.2.a.bn | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.bo | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-3q^{11}-6q^{13}+\cdots\) | |
| 35700.2.a.bp | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{3}+q^{7}+q^{9}-2q^{11}-2q^{13}+\cdots\) | |
| 35700.2.a.bq | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-2q^{11}-q^{13}+q^{17}+\cdots\) | |
| 35700.2.a.br | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-6q^{13}+q^{17}-2q^{19}+\cdots\) | |
| 35700.2.a.bs | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-4q^{13}+q^{17}-8q^{19}+\cdots\) | |
| 35700.2.a.bt | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-q^{13}+q^{17}+8q^{19}+\cdots\) | |
| 35700.2.a.bu | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{7}+q^{9}+q^{11}+4q^{13}-q^{17}+\cdots\) | |
| 35700.2.a.bv | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{3}+q^{7}+q^{9}+2q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.bw | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{7}+q^{9}+3q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.bx | $1$ | $285.066$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
| 35700.2.a.by | $2$ | $285.066$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 35700.2.a.bz | $2$ | $285.066$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 35700.2.a.ca | $2$ | $285.066$ | \(\Q(\sqrt{10}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 35700.2.a.cb | $2$ | $285.066$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 35700.2.a.cc | $2$ | $285.066$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 35700.2.a.cd | $2$ | $285.066$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 35700.2.a.ce | $2$ | $285.066$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 35700.2.a.cf | $2$ | $285.066$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 35700.2.a.cg | $2$ | $285.066$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 35700.2.a.ch | $2$ | $285.066$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 35700.2.a.ci | $2$ | $285.066$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 35700.2.a.cj | $3$ | $285.066$ | 3.3.4764.1 | None | \(0\) | \(3\) | \(0\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 35700.2.a.ck | $3$ | $285.066$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(3\) | \(0\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 35700.2.a.cl | $4$ | $285.066$ | 4.4.20308.1 | None | \(0\) | \(-4\) | \(0\) | \(4\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 35700.2.a.cm | $4$ | $285.066$ | 4.4.7168.1 | None | \(0\) | \(-4\) | \(0\) | \(4\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 35700.2.a.cn | $5$ | $285.066$ | 5.5.712753.1 | None | \(0\) | \(-5\) | \(0\) | \(-5\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 35700.2.a.co | $5$ | $285.066$ | 5.5.236549.1 | None | \(0\) | \(-5\) | \(0\) | \(5\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 35700.2.a.cp | $5$ | $285.066$ | 5.5.7197952.1 | None | \(0\) | \(5\) | \(0\) | \(-5\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 35700.2.a.cq | $5$ | $285.066$ | 5.5.712753.1 | None | \(0\) | \(5\) | \(0\) | \(5\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
| 35700.2.a.cr | $6$ | $285.066$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-6\) | \(0\) | \(-6\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 35700.2.a.cs | $6$ | $285.066$ | 6.6.202392513.1 | None | \(0\) | \(-6\) | \(0\) | \(-6\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
| 35700.2.a.ct | $6$ | $285.066$ | 6.6.331376345.1 | None | \(0\) | \(-6\) | \(0\) | \(6\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 35700.2.a.cu | $6$ | $285.066$ | 6.6.331376345.1 | None | \(0\) | \(6\) | \(0\) | \(-6\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
| 35700.2.a.cv | $6$ | $285.066$ | 6.6.137521152.1 | None | \(0\) | \(6\) | \(0\) | \(6\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 35700.2.a.cw | $6$ | $285.066$ | 6.6.202392513.1 | None | \(0\) | \(6\) | \(0\) | \(6\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 35700.2.a.cx | $7$ | $285.066$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-7\) | \(0\) | \(-7\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
| 35700.2.a.cy | $7$ | $285.066$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-7\) | \(0\) | \(7\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
| 35700.2.a.cz | $7$ | $285.066$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(7\) | \(0\) | \(-7\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 35700.2.a.da | $7$ | $285.066$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(7\) | \(0\) | \(7\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 35700.2.a.db | $8$ | $285.066$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-8\) | \(0\) | \(8\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 35700.2.a.dc | $8$ | $285.066$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(8\) | \(0\) | \(-8\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 35700.2.a.dd | $9$ | $285.066$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-9\) | \(0\) | \(-9\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 35700.2.a.de | $9$ | $285.066$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-9\) | \(0\) | \(9\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 35700.2.a.df | $9$ | $285.066$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(9\) | \(0\) | \(-9\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 35700.2.a.dg | $9$ | $285.066$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(9\) | \(0\) | \(9\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 35700.2.a.dh | $10$ | $285.066$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-10\) | \(0\) | \(-10\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
| 35700.2.a.di | $10$ | $285.066$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-10\) | \(0\) | \(10\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 35700.2.a.dj | $10$ | $285.066$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-10\) | \(0\) | \(10\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
| 35700.2.a.dk | $10$ | $285.066$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(10\) | \(0\) | \(-10\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
| 35700.2.a.dl | $10$ | $285.066$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(10\) | \(0\) | \(-10\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 35700.2.a.dm | $10$ | $285.066$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(10\) | \(0\) | \(10\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
| 35700.2.a.dn | $11$ | $285.066$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(-11\) | \(0\) | \(-11\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
| 35700.2.a.do | $11$ | $285.066$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(11\) | \(0\) | \(11\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(35700))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(35700)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(510))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(595))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(700))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1020))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1190))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1275))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1428))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1700))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1785))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2380))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2550))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2975))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3570))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5950))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7140))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8925))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(11900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17850))\)\(^{\oplus 2}\)