Properties

Label 35700.2.a
Level $35700$
Weight $2$
Character orbit 35700.a
Rep. character $\chi_{35700}(1,\cdot)$
Character field $\Q$
Dimension $304$
Newform subspaces $93$
Sturm bound $17280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 35700.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 93 \)
Sturm bound: \(17280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(35700))\).

Total New Old
Modular forms 8712 304 8408
Cusp forms 8569 304 8265
Eisenstein series 143 0 143

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(+\)\(252\)\(0\)\(252\)\(247\)\(0\)\(247\)\(5\)\(0\)\(5\)
\(+\)\(+\)\(+\)\(+\)\(-\)\(-\)\(291\)\(0\)\(291\)\(285\)\(0\)\(285\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(+\)\(-\)\(+\)\(-\)\(288\)\(0\)\(288\)\(282\)\(0\)\(282\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(+\)\(261\)\(0\)\(261\)\(255\)\(0\)\(255\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(+\)\(-\)\(283\)\(0\)\(283\)\(277\)\(0\)\(277\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(+\)\(264\)\(0\)\(264\)\(258\)\(0\)\(258\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(+\)\(269\)\(0\)\(269\)\(263\)\(0\)\(263\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(-\)\(-\)\(276\)\(0\)\(276\)\(270\)\(0\)\(270\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(+\)\(-\)\(258\)\(0\)\(258\)\(252\)\(0\)\(252\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(+\)\(291\)\(0\)\(291\)\(285\)\(0\)\(285\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(+\)\(282\)\(0\)\(282\)\(276\)\(0\)\(276\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(-\)\(-\)\(261\)\(0\)\(261\)\(255\)\(0\)\(255\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(+\)\(279\)\(0\)\(279\)\(273\)\(0\)\(273\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(-\)\(-\)\(266\)\(0\)\(266\)\(260\)\(0\)\(260\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(-\)\(+\)\(-\)\(273\)\(0\)\(273\)\(267\)\(0\)\(267\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(+\)\(274\)\(0\)\(274\)\(268\)\(0\)\(268\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(+\)\(+\)\(-\)\(270\)\(19\)\(251\)\(267\)\(19\)\(248\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(+\)\(276\)\(17\)\(259\)\(273\)\(17\)\(256\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(+\)\(279\)\(16\)\(263\)\(276\)\(16\)\(260\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(-\)\(-\)\(261\)\(20\)\(241\)\(258\)\(20\)\(238\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(+\)\(269\)\(20\)\(249\)\(266\)\(20\)\(246\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(-\)\(-\)\(273\)\(20\)\(253\)\(270\)\(20\)\(250\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(+\)\(-\)\(268\)\(22\)\(246\)\(265\)\(22\)\(243\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(+\)\(276\)\(18\)\(258\)\(273\)\(18\)\(255\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(+\)\(264\)\(17\)\(247\)\(261\)\(17\)\(244\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(-\)\(-\)\(276\)\(19\)\(257\)\(273\)\(19\)\(254\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(+\)\(-\)\(285\)\(20\)\(265\)\(282\)\(20\)\(262\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(+\)\(261\)\(16\)\(245\)\(258\)\(16\)\(242\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(+\)\(-\)\(273\)\(20\)\(253\)\(270\)\(20\)\(250\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(+\)\(271\)\(20\)\(251\)\(268\)\(20\)\(248\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(+\)\(264\)\(18\)\(246\)\(261\)\(18\)\(243\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(-\)\(-\)\(278\)\(22\)\(256\)\(275\)\(22\)\(253\)\(3\)\(0\)\(3\)
Plus space\(+\)\(4332\)\(142\)\(4190\)\(4261\)\(142\)\(4119\)\(71\)\(0\)\(71\)
Minus space\(-\)\(4380\)\(162\)\(4218\)\(4308\)\(162\)\(4146\)\(72\)\(0\)\(72\)

Trace form

\( 304 q + 304 q^{9} - 4 q^{13} - 4 q^{19} - 24 q^{23} - 8 q^{29} - 16 q^{31} - 4 q^{33} - 8 q^{37} - 8 q^{41} - 4 q^{43} + 24 q^{47} + 304 q^{49} + 4 q^{51} - 40 q^{53} - 8 q^{57} - 56 q^{59} - 24 q^{61}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(35700))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7 17
35700.2.a.a 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-5q^{11}+2q^{13}+\cdots\)
35700.2.a.b 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-4q^{11}-q^{17}-4q^{19}+\cdots\)
35700.2.a.c 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots\)
35700.2.a.d 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-3q^{11}+q^{13}-q^{17}+\cdots\)
35700.2.a.e 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-3q^{11}+6q^{13}+\cdots\)
35700.2.a.f 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-2q^{11}+2q^{13}+\cdots\)
35700.2.a.g 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-2q^{11}+2q^{13}+\cdots\)
35700.2.a.h 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-6q^{13}-q^{17}+6q^{19}+\cdots\)
35700.2.a.i 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-2q^{13}+q^{17}+2q^{19}+\cdots\)
35700.2.a.j 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+q^{13}-q^{17}+8q^{19}+\cdots\)
35700.2.a.k 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+2q^{13}+q^{17}+6q^{19}+\cdots\)
35700.2.a.l 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+4q^{13}-q^{17}-8q^{19}+\cdots\)
35700.2.a.m 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+4q^{13}-q^{17}-4q^{19}+\cdots\)
35700.2.a.n 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+4q^{13}+q^{17}-4q^{19}+\cdots\)
35700.2.a.o 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+q^{11}-4q^{13}+q^{17}+\cdots\)
35700.2.a.p 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+3q^{11}-2q^{13}+\cdots\)
35700.2.a.q 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-6q^{11}-2q^{13}+\cdots\)
35700.2.a.r 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots\)
35700.2.a.s 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-2q^{11}-q^{17}-2q^{19}+\cdots\)
35700.2.a.t 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+4q^{13}+q^{17}-4q^{19}+\cdots\)
35700.2.a.u 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+6q^{13}-q^{17}-2q^{19}+\cdots\)
35700.2.a.v 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+2q^{11}+6q^{13}+\cdots\)
35700.2.a.w 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+3q^{11}-q^{17}-2q^{19}+\cdots\)
35700.2.a.x 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\)
35700.2.a.y 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\)
35700.2.a.z 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-6q^{11}+2q^{13}+\cdots\)
35700.2.a.ba 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-4q^{11}-4q^{13}+\cdots\)
35700.2.a.bb 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\)
35700.2.a.bc 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-q^{11}+7q^{13}+q^{17}+\cdots\)
35700.2.a.bd 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-4q^{13}-q^{17}-4q^{19}+\cdots\)
35700.2.a.be 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+2q^{11}-6q^{13}+\cdots\)
35700.2.a.bf 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+2q^{11}-q^{17}-6q^{19}+\cdots\)
35700.2.a.bg 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+2q^{11}+5q^{13}+\cdots\)
35700.2.a.bh 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+3q^{11}+q^{17}-2q^{19}+\cdots\)
35700.2.a.bi 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\)
35700.2.a.bj 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\)
35700.2.a.bk 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-5q^{11}-2q^{13}+\cdots\)
35700.2.a.bl 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-5q^{11}-q^{13}+q^{17}+\cdots\)
35700.2.a.bm 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-4q^{11}-4q^{13}+\cdots\)
35700.2.a.bn 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\)
35700.2.a.bo 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-3q^{11}-6q^{13}+\cdots\)
35700.2.a.bp 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-2q^{11}-2q^{13}+\cdots\)
35700.2.a.bq 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-2q^{11}-q^{13}+q^{17}+\cdots\)
35700.2.a.br 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-6q^{13}+q^{17}-2q^{19}+\cdots\)
35700.2.a.bs 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-4q^{13}+q^{17}-8q^{19}+\cdots\)
35700.2.a.bt 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-q^{13}+q^{17}+8q^{19}+\cdots\)
35700.2.a.bu 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+q^{11}+4q^{13}-q^{17}+\cdots\)
35700.2.a.bv 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+2q^{11}+2q^{13}+\cdots\)
35700.2.a.bw 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+3q^{11}+2q^{13}+\cdots\)
35700.2.a.bx 35700.a 1.a $1$ $285.066$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\)
35700.2.a.by 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{13}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.bz 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{17}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.ca 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{10}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.cb 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(2\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.cc 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{17}) \) None \(0\) \(-2\) \(0\) \(2\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.cd 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.ce 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.cf 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{17}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.cg 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{13}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.ch 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.ci 35700.a 1.a $2$ $285.066$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.cj 35700.a 1.a $3$ $285.066$ 3.3.4764.1 None \(0\) \(3\) \(0\) \(-3\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.ck 35700.a 1.a $3$ $285.066$ \(\Q(\zeta_{18})^+\) None \(0\) \(3\) \(0\) \(-3\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.cl 35700.a 1.a $4$ $285.066$ 4.4.20308.1 None \(0\) \(-4\) \(0\) \(4\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.cm 35700.a 1.a $4$ $285.066$ 4.4.7168.1 None \(0\) \(-4\) \(0\) \(4\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.cn 35700.a 1.a $5$ $285.066$ 5.5.712753.1 None \(0\) \(-5\) \(0\) \(-5\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.co 35700.a 1.a $5$ $285.066$ 5.5.236549.1 None \(0\) \(-5\) \(0\) \(5\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.cp 35700.a 1.a $5$ $285.066$ 5.5.7197952.1 None \(0\) \(5\) \(0\) \(-5\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.cq 35700.a 1.a $5$ $285.066$ 5.5.712753.1 None \(0\) \(5\) \(0\) \(5\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.cr 35700.a 1.a $6$ $285.066$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-6\) \(0\) \(-6\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.cs 35700.a 1.a $6$ $285.066$ 6.6.202392513.1 None \(0\) \(-6\) \(0\) \(-6\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.ct 35700.a 1.a $6$ $285.066$ 6.6.331376345.1 None \(0\) \(-6\) \(0\) \(6\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.cu 35700.a 1.a $6$ $285.066$ 6.6.331376345.1 None \(0\) \(6\) \(0\) \(-6\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.cv 35700.a 1.a $6$ $285.066$ 6.6.137521152.1 None \(0\) \(6\) \(0\) \(6\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.cw 35700.a 1.a $6$ $285.066$ 6.6.202392513.1 None \(0\) \(6\) \(0\) \(6\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.cx 35700.a 1.a $7$ $285.066$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(-7\) \(0\) \(-7\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.cy 35700.a 1.a $7$ $285.066$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(-7\) \(0\) \(7\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.cz 35700.a 1.a $7$ $285.066$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(7\) \(0\) \(-7\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.da 35700.a 1.a $7$ $285.066$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(7\) \(0\) \(7\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.db 35700.a 1.a $8$ $285.066$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-8\) \(0\) \(8\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.dc 35700.a 1.a $8$ $285.066$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(8\) \(0\) \(-8\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.dd 35700.a 1.a $9$ $285.066$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(-9\) \(0\) \(-9\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.de 35700.a 1.a $9$ $285.066$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(-9\) \(0\) \(9\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.df 35700.a 1.a $9$ $285.066$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(9\) \(0\) \(-9\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.dg 35700.a 1.a $9$ $285.066$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(9\) \(0\) \(9\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.dh 35700.a 1.a $10$ $285.066$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-10\) \(0\) \(-10\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.di 35700.a 1.a $10$ $285.066$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-10\) \(0\) \(10\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.dj 35700.a 1.a $10$ $285.066$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-10\) \(0\) \(10\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
35700.2.a.dk 35700.a 1.a $10$ $285.066$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(10\) \(0\) \(-10\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
35700.2.a.dl 35700.a 1.a $10$ $285.066$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(10\) \(0\) \(-10\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.dm 35700.a 1.a $10$ $285.066$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(10\) \(0\) \(10\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
35700.2.a.dn 35700.a 1.a $11$ $285.066$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None \(0\) \(-11\) \(0\) \(-11\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
35700.2.a.do 35700.a 1.a $11$ $285.066$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None \(0\) \(11\) \(0\) \(11\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(35700))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(35700)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(510))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(595))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(700))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1020))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1190))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1275))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1428))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1700))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1785))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2380))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2550))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2975))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3570))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5950))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7140))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8925))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(11900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17850))\)\(^{\oplus 2}\)