# Properties

 Label 3528.2.s.f.361.1 Level $3528$ Weight $2$ Character 3528.361 Analytic conductor $28.171$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3528.s (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$28.1712218331$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{25}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 504) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 361.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 3528.361 Dual form 3528.2.s.f.3313.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.00000 - 1.73205i) q^{5} +O(q^{10})$$ $$q+(-1.00000 - 1.73205i) q^{5} +(-1.00000 + 1.73205i) q^{11} +2.00000 q^{13} +(-3.00000 + 5.19615i) q^{17} +(2.00000 + 3.46410i) q^{19} +(-3.00000 - 5.19615i) q^{23} +(0.500000 - 0.866025i) q^{25} +(2.00000 - 3.46410i) q^{31} +(-5.00000 - 8.66025i) q^{37} +2.00000 q^{41} -4.00000 q^{43} +(-2.00000 - 3.46410i) q^{47} +(6.00000 - 10.3923i) q^{53} +4.00000 q^{55} +(-6.00000 + 10.3923i) q^{59} +(-3.00000 - 5.19615i) q^{61} +(-2.00000 - 3.46410i) q^{65} +(2.00000 - 3.46410i) q^{67} -14.0000 q^{71} +(1.00000 - 1.73205i) q^{73} +(4.00000 + 6.92820i) q^{79} -16.0000 q^{83} +12.0000 q^{85} +(3.00000 + 5.19615i) q^{89} +(4.00000 - 6.92820i) q^{95} -18.0000 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{5} + O(q^{10})$$ $$2q - 2q^{5} - 2q^{11} + 4q^{13} - 6q^{17} + 4q^{19} - 6q^{23} + q^{25} + 4q^{31} - 10q^{37} + 4q^{41} - 8q^{43} - 4q^{47} + 12q^{53} + 8q^{55} - 12q^{59} - 6q^{61} - 4q^{65} + 4q^{67} - 28q^{71} + 2q^{73} + 8q^{79} - 32q^{83} + 24q^{85} + 6q^{89} + 8q^{95} - 36q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1081$$ $$1765$$ $$2647$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i $$-0.314250\pi$$
−0.998203 + 0.0599153i $$0.980917\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i $$-0.930824\pi$$
0.674967 + 0.737848i $$0.264158\pi$$
$$12$$ 0 0
$$13$$ 2.00000 0.554700 0.277350 0.960769i $$-0.410544\pi$$
0.277350 + 0.960769i $$0.410544\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i $$0.426034\pi$$
−0.957892 + 0.287129i $$0.907299\pi$$
$$18$$ 0 0
$$19$$ 2.00000 + 3.46410i 0.458831 + 0.794719i 0.998899 0.0469020i $$-0.0149348\pi$$
−0.540068 + 0.841621i $$0.681602\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i $$-0.951544\pi$$
0.362892 0.931831i $$-0.381789\pi$$
$$24$$ 0 0
$$25$$ 0.500000 0.866025i 0.100000 0.173205i
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i $$-0.716379\pi$$
0.987829 + 0.155543i $$0.0497126\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −5.00000 8.66025i −0.821995 1.42374i −0.904194 0.427121i $$-0.859528\pi$$
0.0821995 0.996616i $$-0.473806\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 2.00000 0.312348 0.156174 0.987730i $$-0.450084\pi$$
0.156174 + 0.987730i $$0.450084\pi$$
$$42$$ 0 0
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −2.00000 3.46410i −0.291730 0.505291i 0.682489 0.730896i $$-0.260898\pi$$
−0.974219 + 0.225605i $$0.927564\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 6.00000 10.3923i 0.824163 1.42749i −0.0783936 0.996922i $$-0.524979\pi$$
0.902557 0.430570i $$-0.141688\pi$$
$$54$$ 0 0
$$55$$ 4.00000 0.539360
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −6.00000 + 10.3923i −0.781133 + 1.35296i 0.150148 + 0.988663i $$0.452025\pi$$
−0.931282 + 0.364299i $$0.881308\pi$$
$$60$$ 0 0
$$61$$ −3.00000 5.19615i −0.384111 0.665299i 0.607535 0.794293i $$-0.292159\pi$$
−0.991645 + 0.128994i $$0.958825\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −2.00000 3.46410i −0.248069 0.429669i
$$66$$ 0 0
$$67$$ 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i $$-0.754762\pi$$
0.961946 + 0.273241i $$0.0880957\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −14.0000 −1.66149 −0.830747 0.556650i $$-0.812086\pi$$
−0.830747 + 0.556650i $$0.812086\pi$$
$$72$$ 0 0
$$73$$ 1.00000 1.73205i 0.117041 0.202721i −0.801553 0.597924i $$-0.795992\pi$$
0.918594 + 0.395203i $$0.129326\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 4.00000 + 6.92820i 0.450035 + 0.779484i 0.998388 0.0567635i $$-0.0180781\pi$$
−0.548352 + 0.836247i $$0.684745\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −16.0000 −1.75623 −0.878114 0.478451i $$-0.841198\pi$$
−0.878114 + 0.478451i $$0.841198\pi$$
$$84$$ 0 0
$$85$$ 12.0000 1.30158
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i $$-0.0636557\pi$$
−0.662071 + 0.749441i $$0.730322\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 4.00000 6.92820i 0.410391 0.710819i
$$96$$ 0 0
$$97$$ −18.0000 −1.82762 −0.913812 0.406138i $$-0.866875\pi$$
−0.913812 + 0.406138i $$0.866875\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −7.00000 + 12.1244i −0.696526 + 1.20642i 0.273138 + 0.961975i $$0.411939\pi$$
−0.969664 + 0.244443i $$0.921395\pi$$
$$102$$ 0 0
$$103$$ 2.00000 + 3.46410i 0.197066 + 0.341328i 0.947576 0.319531i $$-0.103525\pi$$
−0.750510 + 0.660859i $$0.770192\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 3.00000 + 5.19615i 0.290021 + 0.502331i 0.973814 0.227345i $$-0.0730044\pi$$
−0.683793 + 0.729676i $$0.739671\pi$$
$$108$$ 0 0
$$109$$ −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i $$-0.863869\pi$$
0.814152 + 0.580651i $$0.197202\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −16.0000 −1.50515 −0.752577 0.658505i $$-0.771189\pi$$
−0.752577 + 0.658505i $$0.771189\pi$$
$$114$$ 0 0
$$115$$ −6.00000 + 10.3923i −0.559503 + 0.969087i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 3.50000 + 6.06218i 0.318182 + 0.551107i
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ −12.0000 −1.07331
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −4.00000 6.92820i −0.349482 0.605320i 0.636676 0.771132i $$-0.280309\pi$$
−0.986157 + 0.165812i $$0.946976\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i $$-0.662010\pi$$
0.999893 0.0146279i $$-0.00465636\pi$$
$$138$$ 0 0
$$139$$ 16.0000 1.35710 0.678551 0.734553i $$-0.262608\pi$$
0.678551 + 0.734553i $$0.262608\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −2.00000 + 3.46410i −0.167248 + 0.289683i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −6.00000 10.3923i −0.491539 0.851371i 0.508413 0.861113i $$-0.330232\pi$$
−0.999953 + 0.00974235i $$0.996899\pi$$
$$150$$ 0 0
$$151$$ −12.0000 + 20.7846i −0.976546 + 1.69143i −0.301811 + 0.953368i $$0.597591\pi$$
−0.674735 + 0.738060i $$0.735742\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −8.00000 −0.642575
$$156$$ 0 0
$$157$$ −3.00000 + 5.19615i −0.239426 + 0.414698i −0.960550 0.278108i $$-0.910293\pi$$
0.721124 + 0.692806i $$0.243626\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 6.00000 + 10.3923i 0.469956 + 0.813988i 0.999410 0.0343508i $$-0.0109363\pi$$
−0.529454 + 0.848339i $$0.677603\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 4.00000 0.309529 0.154765 0.987951i $$-0.450538\pi$$
0.154765 + 0.987951i $$0.450538\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i $$-0.239913\pi$$
−0.957241 + 0.289292i $$0.906580\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 5.00000 8.66025i 0.373718 0.647298i −0.616417 0.787420i $$-0.711416\pi$$
0.990134 + 0.140122i $$0.0447496\pi$$
$$180$$ 0 0
$$181$$ −14.0000 −1.04061 −0.520306 0.853980i $$-0.674182\pi$$
−0.520306 + 0.853980i $$0.674182\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −10.0000 + 17.3205i −0.735215 + 1.27343i
$$186$$ 0 0
$$187$$ −6.00000 10.3923i −0.438763 0.759961i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −13.0000 22.5167i −0.940647 1.62925i −0.764241 0.644931i $$-0.776886\pi$$
−0.176406 0.984317i $$-0.556447\pi$$
$$192$$ 0 0
$$193$$ 13.0000 22.5167i 0.935760 1.62078i 0.162488 0.986710i $$-0.448048\pi$$
0.773272 0.634074i $$-0.218619\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −12.0000 −0.854965 −0.427482 0.904024i $$-0.640599\pi$$
−0.427482 + 0.904024i $$0.640599\pi$$
$$198$$ 0 0
$$199$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ −2.00000 3.46410i −0.139686 0.241943i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −8.00000 −0.553372
$$210$$ 0 0
$$211$$ −12.0000 −0.826114 −0.413057 0.910705i $$-0.635539\pi$$
−0.413057 + 0.910705i $$0.635539\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 4.00000 + 6.92820i 0.272798 + 0.472500i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −6.00000 + 10.3923i −0.403604 + 0.699062i
$$222$$ 0 0
$$223$$ 24.0000 1.60716 0.803579 0.595198i $$-0.202926\pi$$
0.803579 + 0.595198i $$0.202926\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −14.0000 + 24.2487i −0.929213 + 1.60944i −0.144571 + 0.989494i $$0.546180\pi$$
−0.784642 + 0.619949i $$0.787153\pi$$
$$228$$ 0 0
$$229$$ −5.00000 8.66025i −0.330409 0.572286i 0.652183 0.758062i $$-0.273853\pi$$
−0.982592 + 0.185776i $$0.940520\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 2.00000 + 3.46410i 0.131024 + 0.226941i 0.924072 0.382219i $$-0.124840\pi$$
−0.793047 + 0.609160i $$0.791507\pi$$
$$234$$ 0 0
$$235$$ −4.00000 + 6.92820i −0.260931 + 0.451946i
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 14.0000 0.905585 0.452792 0.891616i $$-0.350428\pi$$
0.452792 + 0.891616i $$0.350428\pi$$
$$240$$ 0 0
$$241$$ 13.0000 22.5167i 0.837404 1.45043i −0.0546547 0.998505i $$-0.517406\pi$$
0.892058 0.451920i $$-0.149261\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 4.00000 + 6.92820i 0.254514 + 0.440831i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 12.0000 0.757433 0.378717 0.925513i $$-0.376365\pi$$
0.378717 + 0.925513i $$0.376365\pi$$
$$252$$ 0 0
$$253$$ 12.0000 0.754434
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −13.0000 22.5167i −0.810918 1.40455i −0.912222 0.409695i $$-0.865635\pi$$
0.101305 0.994855i $$-0.467698\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 9.00000 15.5885i 0.554964 0.961225i −0.442943 0.896550i $$-0.646065\pi$$
0.997906 0.0646755i $$-0.0206012\pi$$
$$264$$ 0 0
$$265$$ −24.0000 −1.47431
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −5.00000 + 8.66025i −0.304855 + 0.528025i −0.977229 0.212187i $$-0.931941\pi$$
0.672374 + 0.740212i $$0.265275\pi$$
$$270$$ 0 0
$$271$$ 6.00000 + 10.3923i 0.364474 + 0.631288i 0.988692 0.149963i $$-0.0479155\pi$$
−0.624218 + 0.781251i $$0.714582\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 1.00000 + 1.73205i 0.0603023 + 0.104447i
$$276$$ 0 0
$$277$$ 1.00000 1.73205i 0.0600842 0.104069i −0.834419 0.551131i $$-0.814196\pi$$
0.894503 + 0.447062i $$0.147530\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 12.0000 0.715860 0.357930 0.933748i $$-0.383483\pi$$
0.357930 + 0.933748i $$0.383483\pi$$
$$282$$ 0 0
$$283$$ −14.0000 + 24.2487i −0.832214 + 1.44144i 0.0640654 + 0.997946i $$0.479593\pi$$
−0.896279 + 0.443491i $$0.853740\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −9.50000 16.4545i −0.558824 0.967911i
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 6.00000 0.350524 0.175262 0.984522i $$-0.443923\pi$$
0.175262 + 0.984522i $$0.443923\pi$$
$$294$$ 0 0
$$295$$ 24.0000 1.39733
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −6.00000 10.3923i −0.346989 0.601003i
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −6.00000 + 10.3923i −0.343559 + 0.595062i
$$306$$ 0 0
$$307$$ 4.00000 0.228292 0.114146 0.993464i $$-0.463587\pi$$
0.114146 + 0.993464i $$0.463587\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −10.0000 + 17.3205i −0.567048 + 0.982156i 0.429808 + 0.902920i $$0.358581\pi$$
−0.996856 + 0.0792356i $$0.974752\pi$$
$$312$$ 0 0
$$313$$ 7.00000 + 12.1244i 0.395663 + 0.685309i 0.993186 0.116543i $$-0.0371814\pi$$
−0.597522 + 0.801852i $$0.703848\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −6.00000 10.3923i −0.336994 0.583690i 0.646872 0.762598i $$-0.276077\pi$$
−0.983866 + 0.178908i $$0.942743\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −24.0000 −1.33540
$$324$$ 0 0
$$325$$ 1.00000 1.73205i 0.0554700 0.0960769i
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i $$-0.981428\pi$$
0.448649 0.893708i $$-0.351905\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −8.00000 −0.437087
$$336$$ 0 0
$$337$$ 14.0000 0.762629 0.381314 0.924445i $$-0.375472\pi$$
0.381314 + 0.924445i $$0.375472\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 4.00000 + 6.92820i 0.216612 + 0.375183i
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −3.00000 + 5.19615i −0.161048 + 0.278944i −0.935245 0.354001i $$-0.884821\pi$$
0.774197 + 0.632945i $$0.218154\pi$$
$$348$$ 0 0
$$349$$ −18.0000 −0.963518 −0.481759 0.876304i $$-0.660002\pi$$
−0.481759 + 0.876304i $$0.660002\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 13.0000 22.5167i 0.691920 1.19844i −0.279288 0.960207i $$-0.590098\pi$$
0.971208 0.238233i $$-0.0765683\pi$$
$$354$$ 0 0
$$355$$ 14.0000 + 24.2487i 0.743043 + 1.28699i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 3.00000 + 5.19615i 0.158334 + 0.274242i 0.934268 0.356572i $$-0.116054\pi$$
−0.775934 + 0.630814i $$0.782721\pi$$
$$360$$ 0 0
$$361$$ 1.50000 2.59808i 0.0789474 0.136741i
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −4.00000 −0.209370
$$366$$ 0 0
$$367$$ 16.0000 27.7128i 0.835193 1.44660i −0.0586798 0.998277i $$-0.518689\pi$$
0.893873 0.448320i $$-0.147978\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i $$-0.973781\pi$$
0.427051 0.904227i $$-0.359552\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −28.0000 −1.43826 −0.719132 0.694874i $$-0.755460\pi$$
−0.719132 + 0.694874i $$0.755460\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 12.0000 + 20.7846i 0.613171 + 1.06204i 0.990702 + 0.136047i $$0.0434398\pi$$
−0.377531 + 0.925997i $$0.623227\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 4.00000 6.92820i 0.202808 0.351274i −0.746624 0.665246i $$-0.768327\pi$$
0.949432 + 0.313972i $$0.101660\pi$$
$$390$$ 0 0
$$391$$ 36.0000 1.82060
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 8.00000 13.8564i 0.402524 0.697191i
$$396$$ 0 0
$$397$$ −11.0000 19.0526i −0.552074 0.956221i −0.998125 0.0612128i $$-0.980503\pi$$
0.446051 0.895008i $$-0.352830\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −6.00000 10.3923i −0.299626 0.518967i 0.676425 0.736512i $$-0.263528\pi$$
−0.976050 + 0.217545i $$0.930195\pi$$
$$402$$ 0 0
$$403$$ 4.00000 6.92820i 0.199254 0.345118i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 20.0000 0.991363
$$408$$ 0 0
$$409$$ 1.00000 1.73205i 0.0494468 0.0856444i −0.840243 0.542211i $$-0.817588\pi$$
0.889689 + 0.456566i $$0.150921\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 16.0000 + 27.7128i 0.785409 + 1.36037i
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −4.00000 −0.195413 −0.0977064 0.995215i $$-0.531151\pi$$
−0.0977064 + 0.995215i $$0.531151\pi$$
$$420$$ 0 0
$$421$$ −2.00000 −0.0974740 −0.0487370 0.998812i $$-0.515520\pi$$
−0.0487370 + 0.998812i $$0.515520\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 3.00000 + 5.19615i 0.145521 + 0.252050i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −5.00000 + 8.66025i −0.240842 + 0.417150i −0.960954 0.276707i $$-0.910757\pi$$
0.720113 + 0.693857i $$0.244090\pi$$
$$432$$ 0 0
$$433$$ 10.0000 0.480569 0.240285 0.970702i $$-0.422759\pi$$
0.240285 + 0.970702i $$0.422759\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 12.0000 20.7846i 0.574038 0.994263i
$$438$$ 0 0
$$439$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 9.00000 + 15.5885i 0.427603 + 0.740630i 0.996660 0.0816684i $$-0.0260248\pi$$
−0.569057 + 0.822298i $$0.692691\pi$$
$$444$$ 0 0
$$445$$ 6.00000 10.3923i 0.284427 0.492642i
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −8.00000 −0.377543 −0.188772 0.982021i $$-0.560451\pi$$
−0.188772 + 0.982021i $$0.560451\pi$$
$$450$$ 0 0
$$451$$ −2.00000 + 3.46410i −0.0941763 + 0.163118i
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −11.0000 19.0526i −0.514558 0.891241i −0.999857 0.0168929i $$-0.994623\pi$$
0.485299 0.874348i $$-0.338711\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −18.0000 −0.838344 −0.419172 0.907907i $$-0.637680\pi$$
−0.419172 + 0.907907i $$0.637680\pi$$
$$462$$ 0 0
$$463$$ −16.0000 −0.743583 −0.371792 0.928316i $$-0.621256\pi$$
−0.371792 + 0.928316i $$0.621256\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −2.00000 3.46410i −0.0925490 0.160300i 0.816034 0.578004i $$-0.196168\pi$$
−0.908583 + 0.417704i $$0.862835\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 4.00000 6.92820i 0.183920 0.318559i
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 18.0000 31.1769i 0.822441 1.42451i −0.0814184 0.996680i $$-0.525945\pi$$
0.903859 0.427830i $$-0.140722\pi$$
$$480$$ 0 0
$$481$$ −10.0000 17.3205i −0.455961 0.789747i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 18.0000 + 31.1769i 0.817338 + 1.41567i
$$486$$ 0 0
$$487$$ −4.00000 + 6.92820i −0.181257 + 0.313947i −0.942309 0.334744i $$-0.891350\pi$$
0.761052 + 0.648691i $$0.224683\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 6.00000 0.270776 0.135388 0.990793i $$-0.456772\pi$$
0.135388 + 0.990793i $$0.456772\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i $$-0.138129\pi$$
−0.817781 + 0.575529i $$0.804796\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 16.0000 0.713405 0.356702 0.934218i $$-0.383901\pi$$
0.356702 + 0.934218i $$0.383901\pi$$
$$504$$ 0 0
$$505$$ 28.0000 1.24598
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 7.00000 + 12.1244i 0.310270 + 0.537403i 0.978421 0.206623i $$-0.0662474\pi$$
−0.668151 + 0.744026i $$0.732914\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 4.00000 6.92820i 0.176261 0.305293i
$$516$$ 0 0
$$517$$ 8.00000 0.351840
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −3.00000 + 5.19615i −0.131432 + 0.227648i −0.924229 0.381839i $$-0.875291\pi$$
0.792797 + 0.609486i $$0.208624\pi$$
$$522$$ 0 0
$$523$$ −8.00000 13.8564i −0.349816 0.605898i 0.636401 0.771358i $$-0.280422\pi$$
−0.986216 + 0.165460i $$0.947089\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 12.0000 + 20.7846i 0.522728 + 0.905392i
$$528$$ 0 0
$$529$$ −6.50000 + 11.2583i −0.282609 + 0.489493i
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 4.00000 0.173259
$$534$$ 0 0
$$535$$ 6.00000 10.3923i 0.259403 0.449299i
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 5.00000 + 8.66025i 0.214967 + 0.372333i 0.953262 0.302144i $$-0.0977023\pi$$
−0.738296 + 0.674477i $$0.764369\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 4.00000 0.171341
$$546$$ 0 0
$$547$$ −36.0000 −1.53925 −0.769624 0.638497i $$-0.779557\pi$$
−0.769624 + 0.638497i $$0.779557\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −10.0000 + 17.3205i −0.423714 + 0.733893i −0.996299 0.0859514i $$-0.972607\pi$$
0.572586 + 0.819845i $$0.305940\pi$$
$$558$$ 0 0
$$559$$ −8.00000 −0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 14.0000 24.2487i 0.590030 1.02196i −0.404198 0.914671i $$-0.632449\pi$$
0.994228 0.107290i $$-0.0342173\pi$$
$$564$$ 0 0
$$565$$ 16.0000 + 27.7128i 0.673125 + 1.16589i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 2.00000 + 3.46410i 0.0838444 + 0.145223i 0.904898 0.425628i $$-0.139947\pi$$
−0.821054 + 0.570851i $$0.806613\pi$$
$$570$$ 0 0
$$571$$ −2.00000 + 3.46410i −0.0836974 + 0.144968i −0.904835 0.425762i $$-0.860006\pi$$
0.821138 + 0.570730i $$0.193340\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −6.00000 −0.250217
$$576$$ 0 0
$$577$$ −17.0000 + 29.4449i −0.707719 + 1.22581i 0.257982 + 0.966150i $$0.416942\pi$$
−0.965701 + 0.259656i $$0.916391\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 12.0000 + 20.7846i 0.496989 + 0.860811i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −12.0000 −0.495293 −0.247647 0.968850i $$-0.579657\pi$$
−0.247647 + 0.968850i $$0.579657\pi$$
$$588$$ 0 0
$$589$$ 16.0000 0.659269
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 13.0000 + 22.5167i 0.533846 + 0.924648i 0.999218 + 0.0395334i $$0.0125871\pi$$
−0.465372 + 0.885115i $$0.654080\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −9.00000 + 15.5885i −0.367730 + 0.636927i −0.989210 0.146503i $$-0.953198\pi$$
0.621480 + 0.783430i $$0.286532\pi$$
$$600$$ 0 0
$$601$$ −22.0000 −0.897399 −0.448699 0.893683i $$-0.648113\pi$$
−0.448699 + 0.893683i $$0.648113\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 7.00000 12.1244i 0.284590 0.492925i
$$606$$ 0 0
$$607$$ 20.0000 + 34.6410i 0.811775 + 1.40604i 0.911621 + 0.411033i $$0.134832\pi$$
−0.0998457 + 0.995003i $$0.531835\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −4.00000 6.92820i −0.161823 0.280285i
$$612$$ 0 0
$$613$$ −3.00000 + 5.19615i −0.121169 + 0.209871i −0.920229 0.391381i $$-0.871998\pi$$
0.799060 + 0.601251i $$0.205331\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 28.0000 1.12724 0.563619 0.826035i $$-0.309409\pi$$
0.563619 + 0.826035i $$0.309409\pi$$
$$618$$ 0 0
$$619$$ −20.0000 + 34.6410i −0.803868 + 1.39234i 0.113185 + 0.993574i $$0.463895\pi$$
−0.917053 + 0.398766i $$0.869439\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 9.50000 + 16.4545i 0.380000 + 0.658179i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 60.0000 2.39236
$$630$$ 0 0
$$631$$ 24.0000 0.955425 0.477712 0.878516i $$-0.341466\pi$$
0.477712 + 0.878516i $$0.341466\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 8.00000 + 13.8564i 0.317470 + 0.549875i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −6.00000 + 10.3923i −0.236986 + 0.410471i −0.959848 0.280521i $$-0.909493\pi$$
0.722862 + 0.690992i $$0.242826\pi$$
$$642$$ 0 0
$$643$$ −44.0000 −1.73519 −0.867595 0.497271i $$-0.834335\pi$$
−0.867595 + 0.497271i $$0.834335\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 10.0000 17.3205i 0.393141 0.680939i −0.599721 0.800209i $$-0.704722\pi$$
0.992862 + 0.119269i $$0.0380552\pi$$
$$648$$ 0 0
$$649$$ −12.0000 20.7846i −0.471041 0.815867i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 16.0000 + 27.7128i 0.626128 + 1.08449i 0.988322 + 0.152383i $$0.0486948\pi$$
−0.362193 + 0.932103i $$0.617972\pi$$
$$654$$ 0 0
$$655$$ −8.00000 + 13.8564i −0.312586 + 0.541415i
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 42.0000 1.63609 0.818044 0.575156i $$-0.195059\pi$$
0.818044 + 0.575156i $$0.195059\pi$$
$$660$$ 0 0
$$661$$ 5.00000 8.66025i 0.194477 0.336845i −0.752252 0.658876i $$-0.771032\pi$$
0.946729 + 0.322031i $$0.104366\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 12.0000 0.463255
$$672$$ 0 0
$$673$$ −2.00000 −0.0770943 −0.0385472 0.999257i $$-0.512273\pi$$
−0.0385472 + 0.999257i $$0.512273\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −15.0000 25.9808i −0.576497 0.998522i −0.995877 0.0907112i $$-0.971086\pi$$
0.419380 0.907811i $$-0.362247\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −15.0000 + 25.9808i −0.573959 + 0.994126i 0.422195 + 0.906505i $$0.361260\pi$$
−0.996154 + 0.0876211i $$0.972074\pi$$
$$684$$ 0 0
$$685$$ −24.0000 −0.916993
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 12.0000 20.7846i 0.457164 0.791831i
$$690$$ 0 0
$$691$$ −20.0000 34.6410i −0.760836 1.31781i −0.942420 0.334431i $$-0.891456\pi$$
0.181584 0.983375i $$-0.441877\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −16.0000 27.7128i −0.606915 1.05121i
$$696$$ 0 0
$$697$$ −6.00000 + 10.3923i −0.227266 + 0.393637i
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 48.0000 1.81293 0.906467 0.422276i $$-0.138769\pi$$
0.906467 + 0.422276i $$0.138769\pi$$
$$702$$ 0 0
$$703$$ 20.0000 34.6410i 0.754314 1.30651i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 3.00000 + 5.19615i 0.112667 + 0.195146i 0.916845 0.399244i $$-0.130727\pi$$
−0.804178 + 0.594389i $$0.797394\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ −24.0000 −0.898807
$$714$$ 0 0
$$715$$ 8.00000 0.299183
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −16.0000 27.7128i −0.596699 1.03351i −0.993305 0.115524i $$-0.963145\pi$$
0.396605 0.917989i $$-0.370188\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 28.0000 1.03846 0.519231 0.854634i $$-0.326218\pi$$
0.519231 + 0.854634i $$0.326218\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 12.0000 20.7846i 0.443836 0.768747i
$$732$$ 0 0
$$733$$ −13.0000 22.5167i −0.480166 0.831672i 0.519575 0.854425i $$-0.326090\pi$$
−0.999741 + 0.0227529i $$0.992757\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 4.00000 + 6.92820i 0.147342 + 0.255204i
$$738$$ 0 0
$$739$$ 22.0000 38.1051i 0.809283 1.40172i −0.104078 0.994569i $$-0.533189\pi$$
0.913361 0.407150i $$-0.133477\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 2.00000 0.0733729 0.0366864 0.999327i $$-0.488320\pi$$
0.0366864 + 0.999327i $$0.488320\pi$$
$$744$$ 0 0
$$745$$ −12.0000 + 20.7846i −0.439646 + 0.761489i
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 4.00000 + 6.92820i 0.145962 + 0.252814i 0.929731 0.368238i $$-0.120039\pi$$
−0.783769 + 0.621052i $$0.786706\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 48.0000 1.74690
$$756$$ 0 0
$$757$$ −38.0000 −1.38113 −0.690567 0.723269i $$-0.742639\pi$$
−0.690567 + 0.723269i $$0.742639\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 15.0000 + 25.9808i 0.543750 + 0.941802i 0.998684 + 0.0512772i $$0.0163292\pi$$
−0.454935 + 0.890525i $$0.650337\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −12.0000 + 20.7846i −0.433295 + 0.750489i
$$768$$ 0 0
$$769$$ 26.0000 0.937584 0.468792 0.883309i $$-0.344689\pi$$
0.468792 + 0.883309i $$0.344689\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 5.00000 8.66025i 0.179838 0.311488i −0.761987 0.647592i $$-0.775776\pi$$
0.941825 + 0.336104i $$0.109109\pi$$
$$774$$ 0 0
$$775$$ −2.00000 3.46410i −0.0718421 0.124434i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 4.00000 + 6.92820i 0.143315 + 0.248229i
$$780$$ 0 0
$$781$$ 14.0000 24.2487i 0.500959 0.867687i
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 12.0000 0.428298
$$786$$ 0 0
$$787$$ −16.0000 + 27.7128i −0.570338 + 0.987855i 0.426193 + 0.904632i $$0.359855\pi$$
−0.996531 + 0.0832226i $$0.973479\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −6.00000 10.3923i −0.213066 0.369042i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 30.0000 1.06265 0.531327 0.847167i $$-0.321693\pi$$
0.531327 + 0.847167i $$0.321693\pi$$
$$798$$ 0 0
$$799$$ 24.0000 0.849059
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 2.00000 + 3.46410i 0.0705785 + 0.122245i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0