Properties

Label 35131.2.a.e
Level $35131$
Weight $2$
Character orbit 35131.a
Self dual yes
Analytic conductor $280.522$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35131,2,Mod(1,35131)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35131, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35131.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 35131 = 19 \cdot 43^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 35131.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-2,-1,2,-2,-3,-3,1,2,3,2,-2,-3,-4,-1,-3,1,-1,-2,6,3,-1,6, -1,-2,4,3,0,-4,2,5,-6,-3,-6,-1,0,-1,4,-6,2,6,0,-3,2,-1,-8,2,2,-1,6,2,4, 4,6,9,2,0,0,4,-13,2,-3,7,-4,-6,6,3,2,-6,8,-3,2,0,2,1,-9,4,10,-2,-11,2, -15,-6,-6,0,0,-9,2,2,6,1,-4,-8,-2,-10,16,2,3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(280.522447341\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - 2 q^{3} - q^{4} + 2 q^{5} - 2 q^{6} - 3 q^{7} - 3 q^{8} + q^{9} + 2 q^{10} + 3 q^{11} + 2 q^{12} - 2 q^{13} - 3 q^{14} - 4 q^{15} - q^{16} - 3 q^{17} + q^{18} - q^{19} - 2 q^{20} + 6 q^{21}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(19\) \( +1 \)
\(43\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.