Properties

Label 351.2.a
Level $351$
Weight $2$
Character orbit 351.a
Rep. character $\chi_{351}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $6$
Sturm bound $84$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(84\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(351))\).

Total New Old
Modular forms 48 16 32
Cusp forms 37 16 21
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(8\)\(2\)\(6\)\(6\)\(2\)\(4\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(14\)\(6\)\(8\)\(11\)\(6\)\(5\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(16\)\(6\)\(10\)\(13\)\(6\)\(7\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(10\)\(2\)\(8\)\(7\)\(2\)\(5\)\(3\)\(0\)\(3\)
Plus space\(+\)\(18\)\(4\)\(14\)\(13\)\(4\)\(9\)\(5\)\(0\)\(5\)
Minus space\(-\)\(30\)\(12\)\(18\)\(24\)\(12\)\(12\)\(6\)\(0\)\(6\)

Trace form

\( 16 q + 20 q^{4} + 4 q^{7} + 12 q^{10} + 8 q^{19} - 16 q^{22} + 36 q^{25} - 4 q^{28} + 16 q^{31} - 4 q^{34} + 20 q^{37} + 16 q^{40} - 20 q^{43} - 52 q^{46} + 8 q^{49} + 4 q^{52} - 40 q^{55} - 32 q^{58} + 40 q^{61}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(351))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 13
351.2.a.a 351.a 1.a $2$ $2.803$ \(\Q(\sqrt{5}) \) None 351.2.a.a \(-1\) \(0\) \(-3\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}+(-1-\beta )q^{5}+\cdots\)
351.2.a.b 351.a 1.a $2$ $2.803$ \(\Q(\sqrt{13}) \) None 351.2.a.b \(-1\) \(0\) \(-5\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(1+\beta )q^{4}+(-3+\beta )q^{5}-q^{7}+\cdots\)
351.2.a.c 351.a 1.a $2$ $2.803$ \(\Q(\sqrt{5}) \) None 351.2.a.a \(1\) \(0\) \(3\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+\beta )q^{4}+(1+\beta )q^{5}+(-1+\cdots)q^{7}+\cdots\)
351.2.a.d 351.a 1.a $2$ $2.803$ \(\Q(\sqrt{13}) \) None 351.2.a.b \(1\) \(0\) \(5\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1+\beta )q^{4}+(3-\beta )q^{5}-q^{7}+\cdots\)
351.2.a.e 351.a 1.a $4$ $2.803$ 4.4.65712.1 None 351.2.a.e \(0\) \(0\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}-\beta _{3}q^{5}+2q^{7}+\cdots\)
351.2.a.f 351.a 1.a $4$ $2.803$ 4.4.7600.1 None 351.2.a.f \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(3+\beta _{2})q^{4}+(\beta _{1}+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(351))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(351)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 2}\)