Properties

Label 3456.1.t
Level $3456$
Weight $1$
Character orbit 3456.t
Rep. character $\chi_{3456}(1855,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $576$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3456 = 2^{7} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3456.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3456, [\chi])\).

Total New Old
Modular forms 156 4 152
Cusp forms 60 4 56
Eisenstein series 96 0 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 4 q^{17} - 2 q^{25} - 2 q^{41} - 2 q^{49} + 4 q^{73} + 8 q^{89} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3456, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3456.1.t.a 3456.t 72.p $4$ $1.725$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-2}) \) None 1152.1.t.a \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{12}^{3}-\zeta_{12}^{5})q^{11}-q^{17}+(\zeta_{12}+\cdots)q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3456, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3456, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1152, [\chi])\)\(^{\oplus 2}\)