Properties

Label 3456.1.bn
Level $3456$
Weight $1$
Character orbit 3456.bn
Rep. character $\chi_{3456}(65,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $12$
Newform subspaces $2$
Sturm bound $576$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3456 = 2^{7} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3456.bn (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 216 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 2 \)
Sturm bound: \(576\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3456, [\chi])\).

Total New Old
Modular forms 132 12 120
Cusp forms 36 12 24
Eisenstein series 96 0 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 12 0 0 0

Trace form

\( 12 q + 6 q^{33} + 6 q^{41} + 6 q^{57} + 18 q^{89} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3456, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3456.1.bn.a 3456.bn 216.x $6$ $1.725$ \(\Q(\zeta_{18})\) $D_{18}$ \(\Q(\sqrt{-2}) \) None 3456.1.bn.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{18}^{4}q^{3}+\zeta_{18}^{8}q^{9}+(\zeta_{18}^{2}+\zeta_{18}^{6}+\cdots)q^{11}+\cdots\)
3456.1.bn.b 3456.bn 216.x $6$ $1.725$ \(\Q(\zeta_{18})\) $D_{18}$ \(\Q(\sqrt{-2}) \) None 3456.1.bn.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{18}^{4}q^{3}+\zeta_{18}^{8}q^{9}+(-\zeta_{18}^{2}-\zeta_{18}^{6}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3456, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3456, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1728, [\chi])\)\(^{\oplus 2}\)