Defining parameters
| Level: | \( N \) | \(=\) | \( 34272 = 2^{5} \cdot 3^{2} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 34272.uj (of order \(16\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 68 \) |
| Character field: | \(\Q(\zeta_{16})\) | ||
| Sturm bound: | \(13824\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(34272, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 55808 | 4320 | 51488 |
| Cusp forms | 54784 | 4320 | 50464 |
| Eisenstein series | 1024 | 0 | 1024 |
Decomposition of \(S_{2}^{\mathrm{new}}(34272, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(34272, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(34272, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(544, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(816, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1428, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1632, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1904, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2448, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3808, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4284, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4896, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(5712, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(11424, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(17136, [\chi])\)\(^{\oplus 2}\)