Defining parameters
| Level: | \( N \) | \(=\) | \( 34272 = 2^{5} \cdot 3^{2} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 34272.qq (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4284 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Sturm bound: | \(13824\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(34272, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 27776 | 6912 | 20864 |
| Cusp forms | 27520 | 6912 | 20608 |
| Eisenstein series | 256 | 0 | 256 |
Decomposition of \(S_{2}^{\mathrm{new}}(34272, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(34272, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(34272, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(4284, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(17136, [\chi])\)\(^{\oplus 2}\)