Properties

Label 34272.2.bh
Level $34272$
Weight $2$
Character orbit 34272.bh
Rep. character $\chi_{34272}(11425,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $2304$
Sturm bound $13824$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 34272 = 2^{5} \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 34272.bh (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(13824\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(34272, [\chi])\).

Total New Old
Modular forms 13888 2304 11584
Cusp forms 13760 2304 11456
Eisenstein series 128 0 128

Decomposition of \(S_{2}^{\mathrm{new}}(34272, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(34272, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(34272, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1224, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2016, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2142, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2448, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4284, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4896, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(8568, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(17136, [\chi])\)\(^{\oplus 2}\)