Properties

Label 3400.2.bo
Level $3400$
Weight $2$
Character orbit 3400.bo
Rep. character $\chi_{3400}(681,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $480$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3400.bo (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3400, [\chi])\).

Total New Old
Modular forms 2192 480 1712
Cusp forms 2128 480 1648
Eisenstein series 64 0 64

Trace form

\( 480 q - 8 q^{7} - 120 q^{9} + 12 q^{11} + 40 q^{15} - 16 q^{23} + 12 q^{25} + 24 q^{27} - 12 q^{29} + 12 q^{31} - 4 q^{35} + 24 q^{39} - 16 q^{41} + 32 q^{43} + 124 q^{45} + 48 q^{47} + 504 q^{49} - 48 q^{51}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3400, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3400, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1700, [\chi])\)\(^{\oplus 2}\)