Properties

Label 3400.2.be
Level $3400$
Weight $2$
Character orbit 3400.be
Rep. character $\chi_{3400}(149,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $640$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3400.be (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 680 \)
Character field: \(\Q(i)\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3400, [\chi])\).

Total New Old
Modular forms 1104 656 448
Cusp forms 1056 640 416
Eisenstein series 48 16 32

Trace form

\( 640 q + 8 q^{4} - 20 q^{6} - 20 q^{14} - 24 q^{16} + 8 q^{24} + 24 q^{31} + 12 q^{34} - 16 q^{39} - 16 q^{41} - 56 q^{44} + 28 q^{46} - 4 q^{54} + 40 q^{56} + 56 q^{64} + 56 q^{71} - 32 q^{74} + 40 q^{79}+ \cdots + 28 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3400, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3400, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(680, [\chi])\)\(^{\oplus 2}\)