Properties

Label 3375.2.a.a.1.1
Level $3375$
Weight $2$
Character 3375.1
Self dual yes
Analytic conductor $26.950$
Analytic rank $0$
Dimension $4$
CM discriminant -15
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3375,2,Mod(1,3375)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3375, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3375.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3375 = 3^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3375.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9495106822\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(-1.95630\) of defining polynomial
Character \(\chi\) \(=\) 3375.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.74724 q^{2} +5.54732 q^{4} -9.74533 q^{8} +O(q^{10})\) \(q-2.74724 q^{2} +5.54732 q^{4} -9.74533 q^{8} +15.6781 q^{16} -5.81486 q^{17} +6.80475 q^{19} +8.55922 q^{23} -9.43566 q^{31} -23.5808 q^{32} +15.9748 q^{34} -18.6943 q^{38} -23.5142 q^{46} +13.3445 q^{47} -7.00000 q^{49} -13.3130 q^{53} +15.1980 q^{61} +25.9220 q^{62} +33.4259 q^{64} -32.2569 q^{68} +37.7481 q^{76} +6.03108 q^{79} -1.57526 q^{83} +47.4807 q^{92} -36.6606 q^{94} +19.2307 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 16 q^{4} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 16 q^{4} - 3 q^{8} + 36 q^{16} - 11 q^{17} + 17 q^{19} - 13 q^{23} + 19 q^{31} + q^{34} + 8 q^{38} + 8 q^{46} + 20 q^{47} - 28 q^{49} - 17 q^{53} + 31 q^{61} + 21 q^{62} + 83 q^{64} - 99 q^{68} + 63 q^{76} + 23 q^{79} - 23 q^{83} - 12 q^{92} + 15 q^{94} + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.74724 −1.94259 −0.971295 0.237877i \(-0.923549\pi\)
−0.971295 + 0.237877i \(0.923549\pi\)
\(3\) 0 0
\(4\) 5.54732 2.77366
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −9.74533 −3.44549
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 15.6781 3.91953
\(17\) −5.81486 −1.41031 −0.705156 0.709052i \(-0.749123\pi\)
−0.705156 + 0.709052i \(0.749123\pi\)
\(18\) 0 0
\(19\) 6.80475 1.56112 0.780558 0.625083i \(-0.214935\pi\)
0.780558 + 0.625083i \(0.214935\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.55922 1.78472 0.892360 0.451325i \(-0.149048\pi\)
0.892360 + 0.451325i \(0.149048\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −9.43566 −1.69469 −0.847347 0.531039i \(-0.821802\pi\)
−0.847347 + 0.531039i \(0.821802\pi\)
\(32\) −23.5808 −4.16854
\(33\) 0 0
\(34\) 15.9748 2.73966
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −18.6943 −3.03261
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −23.5142 −3.46698
\(47\) 13.3445 1.94650 0.973249 0.229755i \(-0.0737924\pi\)
0.973249 + 0.229755i \(0.0737924\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.3130 −1.82869 −0.914343 0.404941i \(-0.867292\pi\)
−0.914343 + 0.404941i \(0.867292\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 15.1980 1.94591 0.972953 0.231004i \(-0.0742009\pi\)
0.972953 + 0.231004i \(0.0742009\pi\)
\(62\) 25.9220 3.29210
\(63\) 0 0
\(64\) 33.4259 4.17824
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) −32.2569 −3.91172
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 37.7481 4.33001
\(77\) 0 0
\(78\) 0 0
\(79\) 6.03108 0.678549 0.339275 0.940687i \(-0.389818\pi\)
0.339275 + 0.940687i \(0.389818\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.57526 −0.172908 −0.0864538 0.996256i \(-0.527553\pi\)
−0.0864538 + 0.996256i \(0.527553\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 47.4807 4.95020
\(93\) 0 0
\(94\) −36.6606 −3.78125
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 19.2307 1.94259
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 36.5741 3.55239
\(107\) 15.4115 1.48989 0.744945 0.667126i \(-0.232476\pi\)
0.744945 + 0.667126i \(0.232476\pi\)
\(108\) 0 0
\(109\) 10.4731 1.00314 0.501571 0.865116i \(-0.332756\pi\)
0.501571 + 0.865116i \(0.332756\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.59885 −0.808912 −0.404456 0.914557i \(-0.632539\pi\)
−0.404456 + 0.914557i \(0.632539\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −41.7526 −3.78010
\(123\) 0 0
\(124\) −52.3426 −4.70050
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −44.6674 −3.94808
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 56.6678 4.85922
\(137\) 17.1803 1.46782 0.733908 0.679249i \(-0.237694\pi\)
0.733908 + 0.679249i \(0.237694\pi\)
\(138\) 0 0
\(139\) 23.3366 1.97939 0.989693 0.143203i \(-0.0457402\pi\)
0.989693 + 0.143203i \(0.0457402\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −20.1310 −1.63824 −0.819120 0.573622i \(-0.805538\pi\)
−0.819120 + 0.573622i \(0.805538\pi\)
\(152\) −66.3145 −5.37882
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) −16.5688 −1.31814
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 4.32762 0.335889
\(167\) 25.0508 1.93849 0.969245 0.246099i \(-0.0791488\pi\)
0.969245 + 0.246099i \(0.0791488\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.819660 0.0623176 0.0311588 0.999514i \(-0.490080\pi\)
0.0311588 + 0.999514i \(0.490080\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −13.7969 −1.02551 −0.512756 0.858534i \(-0.671376\pi\)
−0.512756 + 0.858534i \(0.671376\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −83.4124 −6.14924
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 74.0263 5.39892
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −38.8312 −2.77366
\(197\) 23.5871 1.68051 0.840255 0.542192i \(-0.182405\pi\)
0.840255 + 0.542192i \(0.182405\pi\)
\(198\) 0 0
\(199\) −17.1563 −1.21618 −0.608088 0.793869i \(-0.708063\pi\)
−0.608088 + 0.793869i \(0.708063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.9793 −0.893531 −0.446765 0.894651i \(-0.647424\pi\)
−0.446765 + 0.894651i \(0.647424\pi\)
\(212\) −73.8516 −5.07215
\(213\) 0 0
\(214\) −42.3392 −2.89424
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −28.7721 −1.94869
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 23.6231 1.57139
\(227\) −12.4560 −0.826737 −0.413368 0.910564i \(-0.635648\pi\)
−0.413368 + 0.910564i \(0.635648\pi\)
\(228\) 0 0
\(229\) −5.88465 −0.388868 −0.194434 0.980916i \(-0.562287\pi\)
−0.194434 + 0.980916i \(0.562287\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.3607 1.46490 0.732448 0.680823i \(-0.238378\pi\)
0.732448 + 0.680823i \(0.238378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −8.39820 −0.540976 −0.270488 0.962723i \(-0.587185\pi\)
−0.270488 + 0.962723i \(0.587185\pi\)
\(242\) 30.2196 1.94259
\(243\) 0 0
\(244\) 84.3082 5.39728
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 91.9536 5.83906
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 55.8600 3.49125
\(257\) −10.1625 −0.633920 −0.316960 0.948439i \(-0.602662\pi\)
−0.316960 + 0.948439i \(0.602662\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 32.4149 1.99879 0.999395 0.0347681i \(-0.0110693\pi\)
0.999395 + 0.0347681i \(0.0110693\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 27.1686 1.65037 0.825186 0.564861i \(-0.191070\pi\)
0.825186 + 0.564861i \(0.191070\pi\)
\(272\) −91.1660 −5.52775
\(273\) 0 0
\(274\) −47.1985 −2.85136
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −64.1113 −3.84514
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.8126 0.988979
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.6498 −0.622167 −0.311084 0.950383i \(-0.600692\pi\)
−0.311084 + 0.950383i \(0.600692\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 55.3047 3.18243
\(303\) 0 0
\(304\) 106.686 6.11884
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 33.4563 1.88206
\(317\) 35.1803 1.97592 0.987962 0.154694i \(-0.0494393\pi\)
0.987962 + 0.154694i \(0.0494393\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −39.5687 −2.20166
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 36.3114 1.99585 0.997927 0.0643604i \(-0.0205007\pi\)
0.997927 + 0.0643604i \(0.0205007\pi\)
\(332\) −8.73848 −0.479587
\(333\) 0 0
\(334\) −68.8205 −3.76569
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 35.7141 1.94259
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −2.25180 −0.121058
\(347\) 22.8358 1.22589 0.612946 0.790125i \(-0.289984\pi\)
0.612946 + 0.790125i \(0.289984\pi\)
\(348\) 0 0
\(349\) 34.2632 1.83407 0.917033 0.398811i \(-0.130577\pi\)
0.917033 + 0.398811i \(0.130577\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0936 0.537227 0.268613 0.963248i \(-0.413435\pi\)
0.268613 + 0.963248i \(0.413435\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 27.3046 1.43709
\(362\) 37.9033 1.99215
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 134.192 6.99525
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −130.047 −6.70664
\(377\) 0 0
\(378\) 0 0
\(379\) 31.5410 1.62015 0.810077 0.586324i \(-0.199425\pi\)
0.810077 + 0.586324i \(0.199425\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.826319 −0.0422229 −0.0211115 0.999777i \(-0.506720\pi\)
−0.0211115 + 0.999777i \(0.506720\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −49.7707 −2.51701
\(392\) 68.2173 3.44549
\(393\) 0 0
\(394\) −64.7993 −3.26454
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 47.1324 2.36253
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 33.5319 1.65804 0.829022 0.559216i \(-0.188898\pi\)
0.829022 + 0.559216i \(0.188898\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 41.0159 1.99899 0.999495 0.0317621i \(-0.0101119\pi\)
0.999495 + 0.0317621i \(0.0101119\pi\)
\(422\) 35.6572 1.73576
\(423\) 0 0
\(424\) 129.740 6.30073
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 85.4927 4.13244
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 58.0977 2.78237
\(437\) 58.2433 2.78616
\(438\) 0 0
\(439\) 25.5410 1.21901 0.609503 0.792784i \(-0.291369\pi\)
0.609503 + 0.792784i \(0.291369\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.843250 −0.0400640 −0.0200320 0.999799i \(-0.506377\pi\)
−0.0200320 + 0.999799i \(0.506377\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −47.7006 −2.24365
\(453\) 0 0
\(454\) 34.2197 1.60601
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 16.1665 0.755412
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −61.4301 −2.84570
\(467\) −22.8212 −1.05604 −0.528019 0.849233i \(-0.677065\pi\)
−0.528019 + 0.849233i \(0.677065\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 23.0719 1.05089
\(483\) 0 0
\(484\) −61.0205 −2.77366
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) −148.110 −6.70461
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −147.933 −6.64240
\(497\) 0 0
\(498\) 0 0
\(499\) 12.3028 0.550748 0.275374 0.961337i \(-0.411198\pi\)
0.275374 + 0.961337i \(0.411198\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.3607 1.13078 0.565388 0.824825i \(-0.308726\pi\)
0.565388 + 0.824825i \(0.308726\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −64.1261 −2.83400
\(513\) 0 0
\(514\) 27.9188 1.23145
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −89.0516 −3.88283
\(527\) 54.8671 2.39005
\(528\) 0 0
\(529\) 50.2602 2.18522
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −43.5831 −1.87378 −0.936891 0.349620i \(-0.886311\pi\)
−0.936891 + 0.349620i \(0.886311\pi\)
\(542\) −74.6385 −3.20600
\(543\) 0 0
\(544\) 137.119 5.87894
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 95.3048 4.07122
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 129.456 5.49014
\(557\) −22.3607 −0.947452 −0.473726 0.880672i \(-0.657091\pi\)
−0.473726 + 0.880672i \(0.657091\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.5953 −0.783698 −0.391849 0.920030i \(-0.628164\pi\)
−0.391849 + 0.920030i \(0.628164\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −19.5410 −0.817766 −0.408883 0.912587i \(-0.634082\pi\)
−0.408883 + 0.912587i \(0.634082\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −46.1883 −1.92118
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 29.2575 1.20862
\(587\) −21.4965 −0.887256 −0.443628 0.896211i \(-0.646309\pi\)
−0.443628 + 0.896211i \(0.646309\pi\)
\(588\) 0 0
\(589\) −64.2073 −2.64562
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.6402 0.642265 0.321133 0.947034i \(-0.395936\pi\)
0.321133 + 0.947034i \(0.395936\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 48.4525 1.97642 0.988209 0.153114i \(-0.0489300\pi\)
0.988209 + 0.153114i \(0.0489300\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −111.673 −4.54392
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −160.462 −6.50758
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.7682 −1.11791 −0.558953 0.829199i \(-0.688797\pi\)
−0.558953 + 0.829199i \(0.688797\pi\)
\(618\) 0 0
\(619\) −35.6973 −1.43480 −0.717398 0.696664i \(-0.754667\pi\)
−0.717398 + 0.696664i \(0.754667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −49.5410 −1.97220 −0.986098 0.166162i \(-0.946862\pi\)
−0.986098 + 0.166162i \(0.946862\pi\)
\(632\) −58.7748 −2.33794
\(633\) 0 0
\(634\) −96.6488 −3.83841
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 108.705 4.27693
\(647\) −43.3607 −1.70468 −0.852342 0.522985i \(-0.824819\pi\)
−0.852342 + 0.522985i \(0.824819\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 39.3046 1.53811 0.769054 0.639184i \(-0.220728\pi\)
0.769054 + 0.639184i \(0.220728\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 37.4027 1.45480 0.727399 0.686215i \(-0.240729\pi\)
0.727399 + 0.686215i \(0.240729\pi\)
\(662\) −99.7560 −3.87713
\(663\) 0 0
\(664\) 15.3515 0.595752
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 138.965 5.37671
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −72.1151 −2.77366
\(677\) −0.892464 −0.0343002 −0.0171501 0.999853i \(-0.505459\pi\)
−0.0171501 + 0.999853i \(0.505459\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.37808 −0.167522 −0.0837612 0.996486i \(-0.526693\pi\)
−0.0837612 + 0.996486i \(0.526693\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 49.2532 1.87368 0.936840 0.349758i \(-0.113736\pi\)
0.936840 + 0.349758i \(0.113736\pi\)
\(692\) 4.54692 0.172848
\(693\) 0 0
\(694\) −62.7355 −2.38141
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −94.1291 −3.56284
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −27.7295 −1.04361
\(707\) 0 0
\(708\) 0 0
\(709\) 48.3522 1.81591 0.907953 0.419072i \(-0.137644\pi\)
0.907953 + 0.419072i \(0.137644\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −80.7618 −3.02455
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −75.0123 −2.79167
\(723\) 0 0
\(724\) −76.5356 −2.84442
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −201.833 −7.43968
\(737\) 0 0
\(738\) 0 0
\(739\) 7.36075 0.270770 0.135385 0.990793i \(-0.456773\pi\)
0.135385 + 0.990793i \(0.456773\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −44.7214 −1.64067 −0.820334 0.571885i \(-0.806212\pi\)
−0.820334 + 0.571885i \(0.806212\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −54.7610 −1.99826 −0.999128 0.0417535i \(-0.986706\pi\)
−0.999128 + 0.0417535i \(0.986706\pi\)
\(752\) 209.217 7.62934
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) −86.6507 −3.14730
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 2.27009 0.0820218
\(767\) 0 0
\(768\) 0 0
\(769\) 54.6254 1.96984 0.984921 0.173007i \(-0.0553485\pi\)
0.984921 + 0.173007i \(0.0553485\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.6291 −0.957783 −0.478892 0.877874i \(-0.658961\pi\)
−0.478892 + 0.877874i \(0.658961\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 136.732 4.88952
\(783\) 0 0
\(784\) −109.747 −3.91953
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 130.845 4.66116
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −95.1714 −3.37326
\(797\) 42.3567 1.50035 0.750175 0.661239i \(-0.229969\pi\)
0.750175 + 0.661239i \(0.229969\pi\)
\(798\) 0 0
\(799\) −77.5965 −2.74517
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 28.4100 0.997610 0.498805 0.866714i \(-0.333772\pi\)
0.498805 + 0.866714i \(0.333772\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −92.1200 −3.22090
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.5263 1.68743 0.843713 0.536794i \(-0.180365\pi\)
0.843713 + 0.536794i \(0.180365\pi\)
\(828\) 0 0
\(829\) −0.188788 −0.00655687 −0.00327844 0.999995i \(-0.501044\pi\)
−0.00327844 + 0.999995i \(0.501044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 40.7040 1.41031
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −112.680 −3.88322
\(843\) 0 0
\(844\) −72.0002 −2.47835
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −208.723 −7.16758
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −150.190 −5.13340
\(857\) 50.2935 1.71799 0.858997 0.511980i \(-0.171088\pi\)
0.858997 + 0.511980i \(0.171088\pi\)
\(858\) 0 0
\(859\) 55.5410 1.89504 0.947518 0.319704i \(-0.103583\pi\)
0.947518 + 0.319704i \(0.103583\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.6393 −0.362167 −0.181083 0.983468i \(-0.557960\pi\)
−0.181083 + 0.983468i \(0.557960\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −102.064 −3.45632
\(873\) 0 0
\(874\) −160.008 −5.41236
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) −70.1673 −2.36803
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.31661 0.0778280
\(887\) −32.1236 −1.07861 −0.539303 0.842112i \(-0.681312\pi\)
−0.539303 + 0.842112i \(0.681312\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 90.8061 3.03871
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 77.4135 2.57902
\(902\) 0 0
\(903\) 0 0
\(904\) 83.7986 2.78710
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) −69.0976 −2.29309
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −32.6440 −1.07859
\(917\) 0 0
\(918\) 0 0
\(919\) 4.79560 0.158192 0.0790962 0.996867i \(-0.474797\pi\)
0.0790962 + 0.996867i \(0.474797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −47.6333 −1.56112
\(932\) 124.042 4.06312
\(933\) 0 0
\(934\) 62.6952 2.05145
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 55.7334 1.81109 0.905546 0.424249i \(-0.139462\pi\)
0.905546 + 0.424249i \(0.139462\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −37.7329 −1.22229 −0.611144 0.791519i \(-0.709290\pi\)
−0.611144 + 0.791519i \(0.709290\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 58.0316 1.87199
\(962\) 0 0
\(963\) 0 0
\(964\) −46.5875 −1.50048
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 107.199 3.44549
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 238.276 7.62703
\(977\) −57.9200 −1.85303 −0.926513 0.376262i \(-0.877209\pi\)
−0.926513 + 0.376262i \(0.877209\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 55.7880 1.77936 0.889681 0.456583i \(-0.150927\pi\)
0.889681 + 0.456583i \(0.150927\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 7.17948 0.228064 0.114032 0.993477i \(-0.463623\pi\)
0.114032 + 0.993477i \(0.463623\pi\)
\(992\) 222.501 7.06440
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −33.7987 −1.06988
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3375.2.a.a.1.1 4
3.2 odd 2 3375.2.a.d.1.4 yes 4
5.4 even 2 3375.2.a.d.1.4 yes 4
15.14 odd 2 CM 3375.2.a.a.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3375.2.a.a.1.1 4 1.1 even 1 trivial
3375.2.a.a.1.1 4 15.14 odd 2 CM
3375.2.a.d.1.4 yes 4 3.2 odd 2
3375.2.a.d.1.4 yes 4 5.4 even 2