Defining parameters
Level: | \( N \) | \(=\) | \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3360.cv (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 840 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 40 | 120 |
Cusp forms | 96 | 24 | 72 |
Eisenstein series | 64 | 16 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 24 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3360, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3360.1.cv.a | $4$ | $1.677$ | \(\Q(\zeta_{8})\) | $D_{4}$ | \(\Q(\sqrt{-6}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{8}^{3}q^{3}-\zeta_{8}q^{5}-\zeta_{8}^{2}q^{7}-\zeta_{8}^{2}q^{9}+\cdots\) |
3360.1.cv.b | $4$ | $1.677$ | \(\Q(\zeta_{8})\) | $D_{4}$ | \(\Q(\sqrt{-6}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q-\zeta_{8}^{3}q^{3}-\zeta_{8}q^{5}+q^{7}-\zeta_{8}^{2}q^{9}+\cdots\) |
3360.1.cv.c | $8$ | $1.677$ | \(\Q(\zeta_{16})\) | $D_{8}$ | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{16}q^{3}-\zeta_{16}q^{5}-\zeta_{16}^{6}q^{7}+\zeta_{16}^{2}q^{9}+\cdots\) |
3360.1.cv.d | $8$ | $1.677$ | \(\Q(\zeta_{16})\) | $D_{8}$ | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{16}^{3}q^{3}+\zeta_{16}q^{5}-\zeta_{16}^{6}q^{7}+\zeta_{16}^{6}q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3360, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3360, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(840, [\chi])\)\(^{\oplus 3}\)