Properties

Label 3332.1.cc.b.1563.1
Level $3332$
Weight $1$
Character 3332.1563
Analytic conductor $1.663$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -68
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(135,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 32, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.135");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3332.cc (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66288462209\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} + \cdots)\)

Embedding invariants

Embedding label 1563.1
Root \(-0.733052 + 0.680173i\) of defining polynomial
Character \(\chi\) \(=\) 3332.1563
Dual form 3332.1.cc.b.1019.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.988831 + 0.149042i) q^{2} +(1.36534 + 0.930874i) q^{3} +(0.955573 - 0.294755i) q^{4} +(-1.48883 - 0.716983i) q^{6} +(-0.900969 + 0.433884i) q^{7} +(-0.900969 + 0.433884i) q^{8} +(0.632289 + 1.61105i) q^{9} +O(q^{10})\) \(q+(-0.988831 + 0.149042i) q^{2} +(1.36534 + 0.930874i) q^{3} +(0.955573 - 0.294755i) q^{4} +(-1.48883 - 0.716983i) q^{6} +(-0.900969 + 0.433884i) q^{7} +(-0.900969 + 0.433884i) q^{8} +(0.632289 + 1.61105i) q^{9} +(-0.722521 + 1.84095i) q^{11} +(1.57906 + 0.487076i) q^{12} +(-1.23305 - 1.54620i) q^{13} +(0.826239 - 0.563320i) q^{14} +(0.826239 - 0.563320i) q^{16} +(-0.733052 + 0.680173i) q^{17} +(-0.865341 - 1.49881i) q^{18} +(-1.63402 - 0.246289i) q^{21} +(0.440071 - 1.92808i) q^{22} +(-0.914101 - 0.848162i) q^{23} +(-1.63402 - 0.246289i) q^{24} +(-0.988831 - 0.149042i) q^{25} +(1.44973 + 1.34515i) q^{26} +(-0.268680 + 1.17716i) q^{27} +(-0.733052 + 0.680173i) q^{28} +(0.900969 + 1.56052i) q^{31} +(-0.733052 + 0.680173i) q^{32} +(-2.70018 + 1.84095i) q^{33} +(0.623490 - 0.781831i) q^{34} +(1.07906 + 1.35310i) q^{36} +(-0.244221 - 3.25890i) q^{39} +1.65248 q^{42} +(-0.147791 + 1.97213i) q^{44} +(1.03030 + 0.702449i) q^{46} +1.65248 q^{48} +(0.623490 - 0.781831i) q^{49} +1.00000 q^{50} +(-1.63402 + 0.246289i) q^{51} +(-1.63402 - 1.11406i) q^{52} +(0.142820 - 0.0440542i) q^{53} +(0.0902318 - 1.20406i) q^{54} +(0.623490 - 0.781831i) q^{56} +(-1.12349 - 1.40881i) q^{62} +(-1.26868 - 1.17716i) q^{63} +(0.623490 - 0.781831i) q^{64} +(2.39564 - 2.22283i) q^{66} +(-0.500000 + 0.866025i) q^{68} +(-0.458528 - 2.00894i) q^{69} +(-0.0332580 + 0.145713i) q^{71} +(-1.26868 - 1.17716i) q^{72} +(-1.21135 - 1.12397i) q^{75} +(-0.147791 - 1.97213i) q^{77} +(0.727208 + 3.18610i) q^{78} +(-0.365341 + 0.632789i) q^{79} +(-0.193950 + 0.179959i) q^{81} +(-1.63402 + 0.246289i) q^{84} +(-0.147791 - 1.97213i) q^{88} +(0.603718 + 1.53825i) q^{89} +(1.78181 + 0.858075i) q^{91} +(-1.12349 - 0.541044i) q^{92} +(-0.222521 + 2.96934i) q^{93} +(-1.63402 + 0.246289i) q^{96} +(-0.500000 + 0.866025i) q^{98} -3.42270 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} + 13 q^{3} + q^{4} - 5 q^{6} - 2 q^{7} - 2 q^{8} + 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + q^{2} + 13 q^{3} + q^{4} - 5 q^{6} - 2 q^{7} - 2 q^{8} + 14 q^{9} - 8 q^{11} - q^{12} - 5 q^{13} + q^{14} + q^{16} + q^{17} - 7 q^{18} - q^{21} + 2 q^{22} + 2 q^{23} - q^{24} + q^{25} - q^{26} + 12 q^{27} + q^{28} + 2 q^{31} + q^{32} - 6 q^{33} - 2 q^{34} - 7 q^{36} - 6 q^{39} + 2 q^{42} - q^{44} + 2 q^{46} + 2 q^{48} - 2 q^{49} + 12 q^{50} - q^{51} - q^{52} - q^{53} - 6 q^{54} - 2 q^{56} - 4 q^{62} - 2 q^{64} + 15 q^{66} - 6 q^{68} - 3 q^{69} + 2 q^{71} - q^{75} - q^{77} - 9 q^{78} - q^{79} + 13 q^{81} - q^{84} - q^{88} - q^{89} + 2 q^{91} - 4 q^{92} - 2 q^{93} - q^{96} - 6 q^{98} - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\) \(1667\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(3\) 1.36534 + 0.930874i 1.36534 + 0.930874i 1.00000 \(0\)
0.365341 + 0.930874i \(0.380952\pi\)
\(4\) 0.955573 0.294755i 0.955573 0.294755i
\(5\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(6\) −1.48883 0.716983i −1.48883 0.716983i
\(7\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(8\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(9\) 0.632289 + 1.61105i 0.632289 + 1.61105i
\(10\) 0 0
\(11\) −0.722521 + 1.84095i −0.722521 + 1.84095i −0.222521 + 0.974928i \(0.571429\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 1.57906 + 0.487076i 1.57906 + 0.487076i
\(13\) −1.23305 1.54620i −1.23305 1.54620i −0.733052 0.680173i \(-0.761905\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(14\) 0.826239 0.563320i 0.826239 0.563320i
\(15\) 0 0
\(16\) 0.826239 0.563320i 0.826239 0.563320i
\(17\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(18\) −0.865341 1.49881i −0.865341 1.49881i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0 0
\(21\) −1.63402 0.246289i −1.63402 0.246289i
\(22\) 0.440071 1.92808i 0.440071 1.92808i
\(23\) −0.914101 0.848162i −0.914101 0.848162i 0.0747301 0.997204i \(-0.476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(24\) −1.63402 0.246289i −1.63402 0.246289i
\(25\) −0.988831 0.149042i −0.988831 0.149042i
\(26\) 1.44973 + 1.34515i 1.44973 + 1.34515i
\(27\) −0.268680 + 1.17716i −0.268680 + 1.17716i
\(28\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(29\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(30\) 0 0
\(31\) 0.900969 + 1.56052i 0.900969 + 1.56052i 0.826239 + 0.563320i \(0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(32\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(33\) −2.70018 + 1.84095i −2.70018 + 1.84095i
\(34\) 0.623490 0.781831i 0.623490 0.781831i
\(35\) 0 0
\(36\) 1.07906 + 1.35310i 1.07906 + 1.35310i
\(37\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(38\) 0 0
\(39\) −0.244221 3.25890i −0.244221 3.25890i
\(40\) 0 0
\(41\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(42\) 1.65248 1.65248
\(43\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(44\) −0.147791 + 1.97213i −0.147791 + 1.97213i
\(45\) 0 0
\(46\) 1.03030 + 0.702449i 1.03030 + 0.702449i
\(47\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(48\) 1.65248 1.65248
\(49\) 0.623490 0.781831i 0.623490 0.781831i
\(50\) 1.00000 1.00000
\(51\) −1.63402 + 0.246289i −1.63402 + 0.246289i
\(52\) −1.63402 1.11406i −1.63402 1.11406i
\(53\) 0.142820 0.0440542i 0.142820 0.0440542i −0.222521 0.974928i \(-0.571429\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(54\) 0.0902318 1.20406i 0.0902318 1.20406i
\(55\) 0 0
\(56\) 0.623490 0.781831i 0.623490 0.781831i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(60\) 0 0
\(61\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(62\) −1.12349 1.40881i −1.12349 1.40881i
\(63\) −1.26868 1.17716i −1.26868 1.17716i
\(64\) 0.623490 0.781831i 0.623490 0.781831i
\(65\) 0 0
\(66\) 2.39564 2.22283i 2.39564 2.22283i
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(69\) −0.458528 2.00894i −0.458528 2.00894i
\(70\) 0 0
\(71\) −0.0332580 + 0.145713i −0.0332580 + 0.145713i −0.988831 0.149042i \(-0.952381\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(72\) −1.26868 1.17716i −1.26868 1.17716i
\(73\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(74\) 0 0
\(75\) −1.21135 1.12397i −1.21135 1.12397i
\(76\) 0 0
\(77\) −0.147791 1.97213i −0.147791 1.97213i
\(78\) 0.727208 + 3.18610i 0.727208 + 3.18610i
\(79\) −0.365341 + 0.632789i −0.365341 + 0.632789i −0.988831 0.149042i \(-0.952381\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(80\) 0 0
\(81\) −0.193950 + 0.179959i −0.193950 + 0.179959i
\(82\) 0 0
\(83\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(84\) −1.63402 + 0.246289i −1.63402 + 0.246289i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −0.147791 1.97213i −0.147791 1.97213i
\(89\) 0.603718 + 1.53825i 0.603718 + 1.53825i 0.826239 + 0.563320i \(0.190476\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(90\) 0 0
\(91\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(92\) −1.12349 0.541044i −1.12349 0.541044i
\(93\) −0.222521 + 2.96934i −0.222521 + 2.96934i
\(94\) 0 0
\(95\) 0 0
\(96\) −1.63402 + 0.246289i −1.63402 + 0.246289i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(99\) −3.42270 −3.42270
\(100\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(101\) 1.03030 + 0.702449i 1.03030 + 0.702449i 0.955573 0.294755i \(-0.0952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(102\) 1.57906 0.487076i 1.57906 0.487076i
\(103\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(104\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(105\) 0 0
\(106\) −0.134659 + 0.0648483i −0.134659 + 0.0648483i
\(107\) 0.698220 + 1.77904i 0.698220 + 1.77904i 0.623490 + 0.781831i \(0.285714\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(108\) 0.0902318 + 1.20406i 0.0902318 + 1.20406i
\(109\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(113\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.71135 2.96415i 1.71135 2.96415i
\(118\) 0 0
\(119\) 0.365341 0.930874i 0.365341 0.930874i
\(120\) 0 0
\(121\) −2.13402 1.98008i −2.13402 1.98008i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.32091 + 1.22563i 1.32091 + 1.22563i
\(125\) 0 0
\(126\) 1.42996 + 0.974928i 1.42996 + 0.974928i
\(127\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(128\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 1.03030 0.702449i 1.03030 0.702449i 0.0747301 0.997204i \(-0.476190\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(132\) −2.03759 + 2.55506i −2.03759 + 2.55506i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.365341 0.930874i 0.365341 0.930874i
\(137\) 0.123490 + 1.64786i 0.123490 + 1.64786i 0.623490 + 0.781831i \(0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0.752824 + 1.91816i 0.752824 + 1.91816i
\(139\) −0.658322 + 0.317031i −0.658322 + 0.317031i −0.733052 0.680173i \(-0.761905\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.0111692 0.149042i 0.0111692 0.149042i
\(143\) 3.73738 1.15283i 3.73738 1.15283i
\(144\) 1.42996 + 0.974928i 1.42996 + 0.974928i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.57906 0.487076i 1.57906 0.487076i
\(148\) 0 0
\(149\) −1.63402 + 0.246289i −1.63402 + 0.246289i −0.900969 0.433884i \(-0.857143\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(150\) 1.36534 + 0.930874i 1.36534 + 0.930874i
\(151\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(152\) 0 0
\(153\) −1.55929 0.750915i −1.55929 0.750915i
\(154\) 0.440071 + 1.92808i 0.440071 + 1.92808i
\(155\) 0 0
\(156\) −1.19395 3.04213i −1.19395 3.04213i
\(157\) 0.0546039 + 0.728639i 0.0546039 + 0.728639i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(158\) 0.266948 0.680173i 0.266948 0.680173i
\(159\) 0.236007 + 0.0727985i 0.236007 + 0.0727985i
\(160\) 0 0
\(161\) 1.19158 + 0.367554i 1.19158 + 0.367554i
\(162\) 0.164962 0.206856i 0.164962 0.206856i
\(163\) 1.65248 1.12664i 1.65248 1.12664i 0.826239 0.563320i \(-0.190476\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.326239 + 1.42935i 0.326239 + 1.42935i 0.826239 + 0.563320i \(0.190476\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 1.57906 0.487076i 1.57906 0.487076i
\(169\) −0.647791 + 2.83816i −0.647791 + 2.83816i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(174\) 0 0
\(175\) 0.955573 0.294755i 0.955573 0.294755i
\(176\) 0.440071 + 1.92808i 0.440071 + 1.92808i
\(177\) 0 0
\(178\) −0.826239 1.43109i −0.826239 1.43109i
\(179\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(180\) 0 0
\(181\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(182\) −1.88980 0.582926i −1.88980 0.582926i
\(183\) 0 0
\(184\) 1.19158 + 0.367554i 1.19158 + 0.367554i
\(185\) 0 0
\(186\) −0.222521 2.96934i −0.222521 2.96934i
\(187\) −0.722521 1.84095i −0.722521 1.84095i
\(188\) 0 0
\(189\) −0.268680 1.17716i −0.268680 1.17716i
\(190\) 0 0
\(191\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(192\) 1.57906 0.487076i 1.57906 0.487076i
\(193\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.365341 0.930874i 0.365341 0.930874i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 3.38447 0.510127i 3.38447 0.510127i
\(199\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0.955573 0.294755i 0.955573 0.294755i
\(201\) 0 0
\(202\) −1.12349 0.541044i −1.12349 0.541044i
\(203\) 0 0
\(204\) −1.48883 + 0.716983i −1.48883 + 0.716983i
\(205\) 0 0
\(206\) 0 0
\(207\) 0.788452 2.00894i 0.788452 2.00894i
\(208\) −1.88980 0.582926i −1.88980 0.582926i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(212\) 0.123490 0.0841939i 0.123490 0.0841939i
\(213\) −0.181049 + 0.167989i −0.181049 + 0.167989i
\(214\) −0.955573 1.65510i −0.955573 1.65510i
\(215\) 0 0
\(216\) −0.268680 1.17716i −0.268680 1.17716i
\(217\) −1.48883 1.01507i −1.48883 1.01507i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(222\) 0 0
\(223\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(224\) 0.365341 0.930874i 0.365341 0.930874i
\(225\) −0.385113 1.68729i −0.385113 1.68729i
\(226\) 0 0
\(227\) −0.0747301 0.129436i −0.0747301 0.129436i 0.826239 0.563320i \(-0.190476\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(228\) 0 0
\(229\) −0.367711 + 0.250701i −0.367711 + 0.250701i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(230\) 0 0
\(231\) 1.63402 2.83021i 1.63402 2.83021i
\(232\) 0 0
\(233\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(234\) −1.25045 + 3.18610i −1.25045 + 3.18610i
\(235\) 0 0
\(236\) 0 0
\(237\) −1.08786 + 0.523887i −1.08786 + 0.523887i
\(238\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(239\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(240\) 0 0
\(241\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(242\) 2.40530 + 1.63991i 2.40530 + 1.63991i
\(243\) 0.761623 0.114796i 0.761623 0.114796i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −1.48883 1.01507i −1.48883 1.01507i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(252\) −1.55929 0.750915i −1.55929 0.750915i
\(253\) 2.22188 1.07000i 2.22188 1.07000i
\(254\) 0 0
\(255\) 0 0
\(256\) 0.365341 0.930874i 0.365341 0.930874i
\(257\) −0.955573 0.294755i −0.955573 0.294755i −0.222521 0.974928i \(-0.571429\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.914101 + 0.848162i −0.914101 + 0.848162i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 1.63402 2.83021i 1.63402 2.83021i
\(265\) 0 0
\(266\) 0 0
\(267\) −0.607634 + 2.66222i −0.607634 + 2.66222i
\(268\) 0 0
\(269\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(270\) 0 0
\(271\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(272\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(273\) 1.63402 + 2.83021i 1.63402 + 2.83021i
\(274\) −0.367711 1.61105i −0.367711 1.61105i
\(275\) 0.988831 1.71271i 0.988831 1.71271i
\(276\) −1.03030 1.78454i −1.03030 1.78454i
\(277\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(278\) 0.603718 0.411608i 0.603718 0.411608i
\(279\) −1.94440 + 2.43821i −1.94440 + 2.43821i
\(280\) 0 0
\(281\) −0.623490 0.781831i −0.623490 0.781831i 0.365341 0.930874i \(-0.380952\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(282\) 0 0
\(283\) −0.722521 + 1.84095i −0.722521 + 1.84095i −0.222521 + 0.974928i \(0.571429\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) 0.0111692 + 0.149042i 0.0111692 + 0.149042i
\(285\) 0 0
\(286\) −3.52382 + 1.69698i −3.52382 + 1.69698i
\(287\) 0 0
\(288\) −1.55929 0.750915i −1.55929 0.750915i
\(289\) 0.0747301 0.997204i 0.0747301 0.997204i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.730682 0.730682 0.365341 0.930874i \(-0.380952\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(294\) −1.48883 + 0.716983i −1.48883 + 0.716983i
\(295\) 0 0
\(296\) 0 0
\(297\) −1.97297 1.34515i −1.97297 1.34515i
\(298\) 1.57906 0.487076i 1.57906 0.487076i
\(299\) −0.184292 + 2.45921i −0.184292 + 2.45921i
\(300\) −1.48883 0.716983i −1.48883 0.716983i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.752824 + 1.91816i 0.752824 + 1.91816i
\(304\) 0 0
\(305\) 0 0
\(306\) 1.65379 + 0.510127i 1.65379 + 0.510127i
\(307\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(308\) −0.722521 1.84095i −0.722521 1.84095i
\(309\) 0 0
\(310\) 0 0
\(311\) 0.733052 0.680173i 0.733052 0.680173i −0.222521 0.974928i \(-0.571429\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(312\) 1.63402 + 2.83021i 1.63402 + 2.83021i
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) −0.162592 0.712362i −0.162592 0.712362i
\(315\) 0 0
\(316\) −0.162592 + 0.712362i −0.162592 + 0.712362i
\(317\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(318\) −0.244221 0.0368104i −0.244221 0.0368104i
\(319\) 0 0
\(320\) 0 0
\(321\) −0.702749 + 3.07894i −0.702749 + 3.07894i
\(322\) −1.23305 0.185853i −1.23305 0.185853i
\(323\) 0 0
\(324\) −0.132289 + 0.229132i −0.132289 + 0.229132i
\(325\) 0.988831 + 1.71271i 0.988831 + 1.71271i
\(326\) −1.46610 + 1.36035i −1.46610 + 1.36035i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.535628 1.36476i −0.535628 1.36476i
\(335\) 0 0
\(336\) −1.48883 + 0.716983i −1.48883 + 0.716983i
\(337\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(338\) 0.217550 2.90301i 0.217550 2.90301i
\(339\) 0 0
\(340\) 0 0
\(341\) −3.52382 + 0.531130i −3.52382 + 0.531130i
\(342\) 0 0
\(343\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.425270 + 0.131178i −0.425270 + 0.131178i −0.500000 0.866025i \(-0.666667\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(348\) 0 0
\(349\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(350\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(351\) 2.15142 1.03607i 2.15142 1.03607i
\(352\) −0.722521 1.84095i −0.722521 1.84095i
\(353\) −0.0747301 0.997204i −0.0747301 0.997204i −0.900969 0.433884i \(-0.857143\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.03030 + 1.29196i 1.03030 + 1.29196i
\(357\) 1.36534 0.930874i 1.36534 0.930874i
\(358\) 0 0
\(359\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) −1.07046 4.68999i −1.07046 4.68999i
\(364\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(365\) 0 0
\(366\) 0 0
\(367\) −1.88980 0.284841i −1.88980 0.284841i −0.900969 0.433884i \(-0.857143\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(368\) −1.23305 0.185853i −1.23305 0.185853i
\(369\) 0 0
\(370\) 0 0
\(371\) −0.109562 + 0.101659i −0.109562 + 0.101659i
\(372\) 0.662592 + 2.90301i 0.662592 + 2.90301i
\(373\) 0.988831 1.71271i 0.988831 1.71271i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(374\) 0.988831 + 1.71271i 0.988831 + 1.71271i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0.441126 + 1.12397i 0.441126 + 1.12397i
\(379\) −0.623490 0.781831i −0.623490 0.781831i 0.365341 0.930874i \(-0.380952\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(384\) −1.48883 + 0.716983i −1.48883 + 0.716983i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.21135 0.825886i −1.21135 0.825886i −0.222521 0.974928i \(-0.571429\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(390\) 0 0
\(391\) 1.24698 1.24698
\(392\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(393\) 2.06061 2.06061
\(394\) 0 0
\(395\) 0 0
\(396\) −3.27064 + 1.00886i −3.27064 + 1.00886i
\(397\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(398\) −0.134659 0.0648483i −0.134659 0.0648483i
\(399\) 0 0
\(400\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(401\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(402\) 0 0
\(403\) 1.30194 3.31728i 1.30194 3.31728i
\(404\) 1.19158 + 0.367554i 1.19158 + 0.367554i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.36534 0.930874i 1.36534 0.930874i
\(409\) −0.109562 + 0.101659i −0.109562 + 0.101659i −0.733052 0.680173i \(-0.761905\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(410\) 0 0
\(411\) −1.36534 + 2.36484i −1.36534 + 2.36484i
\(412\) 0 0
\(413\) 0 0
\(414\) −0.480228 + 2.10402i −0.480228 + 2.10402i
\(415\) 0 0
\(416\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(417\) −1.19395 0.179959i −1.19395 0.179959i
\(418\) 0 0
\(419\) −0.162592 + 0.712362i −0.162592 + 0.712362i 0.826239 + 0.563320i \(0.190476\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(420\) 0 0
\(421\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(422\) 0.222521 0.385418i 0.222521 0.385418i
\(423\) 0 0
\(424\) −0.109562 + 0.101659i −0.109562 + 0.101659i
\(425\) 0.826239 0.563320i 0.826239 0.563320i
\(426\) 0.153989 0.193096i 0.153989 0.193096i
\(427\) 0 0
\(428\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(429\) 6.17594 + 1.90503i 6.17594 + 1.90503i
\(430\) 0 0
\(431\) −0.0747301 0.997204i −0.0747301 0.997204i −0.900969 0.433884i \(-0.857143\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(432\) 0.441126 + 1.12397i 0.441126 + 1.12397i
\(433\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(434\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −0.722521 + 0.108903i −0.722521 + 0.108903i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(440\) 0 0
\(441\) 1.65379 + 0.510127i 1.65379 + 0.510127i
\(442\) −1.97766 −1.97766
\(443\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −2.46026 1.18480i −2.46026 1.18480i
\(448\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(449\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(450\) 0.632289 + 1.61105i 0.632289 + 1.61105i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.03030 0.702449i 1.03030 0.702449i 0.0747301 0.997204i \(-0.476190\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(458\) 0.326239 0.302705i 0.326239 0.302705i
\(459\) −0.603718 1.04567i −0.603718 1.04567i
\(460\) 0 0
\(461\) −0.0332580 0.145713i −0.0332580 0.145713i 0.955573 0.294755i \(-0.0952381\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(462\) −1.19395 + 3.04213i −1.19395 + 3.04213i
\(463\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(468\) 0.761623 3.33689i 0.761623 3.33689i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.603718 + 1.04567i −0.603718 + 1.04567i
\(472\) 0 0
\(473\) 0 0
\(474\) 0.997630 0.680173i 0.997630 0.680173i
\(475\) 0 0
\(476\) 0.0747301 0.997204i 0.0747301 0.997204i
\(477\) 0.161277 + 0.202235i 0.161277 + 0.202235i
\(478\) 0 0
\(479\) 0.455573 1.16078i 0.455573 1.16078i −0.500000 0.866025i \(-0.666667\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.28477 + 1.61105i 1.28477 + 1.61105i
\(484\) −2.62285 1.26310i −2.62285 1.26310i
\(485\) 0 0
\(486\) −0.736007 + 0.227028i −0.736007 + 0.227028i
\(487\) −0.826239 0.563320i −0.826239 0.563320i 0.0747301 0.997204i \(-0.476190\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(488\) 0 0
\(489\) 3.30496 3.30496
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(497\) −0.0332580 0.145713i −0.0332580 0.145713i
\(498\) 0 0
\(499\) 0.266948 + 0.680173i 0.266948 + 0.680173i 1.00000 \(0\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(500\) 0 0
\(501\) −0.885113 + 2.25523i −0.885113 + 2.25523i
\(502\) 0 0
\(503\) 1.19158 + 1.49419i 1.19158 + 1.49419i 0.826239 + 0.563320i \(0.190476\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(504\) 1.65379 + 0.510127i 1.65379 + 0.510127i
\(505\) 0 0
\(506\) −2.03759 + 1.38921i −2.03759 + 1.38921i
\(507\) −3.52642 + 3.27204i −3.52642 + 3.27204i
\(508\) 0 0
\(509\) −0.623490 + 1.07992i −0.623490 + 1.07992i 0.365341 + 0.930874i \(0.380952\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(513\) 0 0
\(514\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(524\) 0.777479 0.974928i 0.777479 0.974928i
\(525\) 1.57906 + 0.487076i 1.57906 + 0.487076i
\(526\) 0 0
\(527\) −1.72188 0.531130i −1.72188 0.531130i
\(528\) −1.19395 + 3.04213i −1.19395 + 3.04213i
\(529\) 0.0414721 + 0.553406i 0.0414721 + 0.553406i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0.204064 2.72305i 0.204064 2.72305i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.988831 + 1.71271i 0.988831 + 1.71271i
\(540\) 0 0
\(541\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.0747301 0.997204i 0.0747301 0.997204i
\(545\) 0 0
\(546\) −2.03759 2.55506i −2.03759 2.55506i
\(547\) 1.32091 0.636119i 1.32091 0.636119i 0.365341 0.930874i \(-0.380952\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(548\) 0.603718 + 1.53825i 0.603718 + 1.53825i
\(549\) 0 0
\(550\) −0.722521 + 1.84095i −0.722521 + 1.84095i
\(551\) 0 0
\(552\) 1.28477 + 1.61105i 1.28477 + 1.61105i
\(553\) 0.0546039 0.728639i 0.0546039 0.728639i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.535628 + 0.496990i −0.535628 + 0.496990i
\(557\) −0.0747301 0.129436i −0.0747301 0.129436i 0.826239 0.563320i \(-0.190476\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(558\) 1.55929 2.70077i 1.55929 2.70077i
\(559\) 0 0
\(560\) 0 0
\(561\) 0.727208 3.18610i 0.727208 3.18610i
\(562\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(563\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.440071 1.92808i 0.440071 1.92808i
\(567\) 0.0966613 0.246289i 0.0966613 0.246289i
\(568\) −0.0332580 0.145713i −0.0332580 0.145713i
\(569\) 0.988831 1.71271i 0.988831 1.71271i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(570\) 0 0
\(571\) 1.32091 1.22563i 1.32091 1.22563i 0.365341 0.930874i \(-0.380952\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(572\) 3.23154 2.20323i 3.23154 2.20323i
\(573\) 0 0
\(574\) 0 0
\(575\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(576\) 1.65379 + 0.510127i 1.65379 + 0.510127i
\(577\) 0.698220 1.77904i 0.698220 1.77904i 0.0747301 0.997204i \(-0.476190\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(578\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.0220888 + 0.294755i −0.0220888 + 0.294755i
\(584\) 0 0
\(585\) 0 0
\(586\) −0.722521 + 0.108903i −0.722521 + 0.108903i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 1.36534 0.930874i 1.36534 0.930874i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.142820 1.90580i 0.142820 1.90580i −0.222521 0.974928i \(-0.571429\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(594\) 2.15142 + 1.03607i 2.15142 + 1.03607i
\(595\) 0 0
\(596\) −1.48883 + 0.716983i −1.48883 + 0.716983i
\(597\) 0.0902318 + 0.229907i 0.0902318 + 0.229907i
\(598\) −0.184292 2.45921i −0.184292 2.45921i
\(599\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(600\) 1.57906 + 0.487076i 1.57906 + 0.487076i
\(601\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −1.03030 1.78454i −1.03030 1.78454i
\(607\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.71135 0.257945i −1.71135 0.257945i
\(613\) 1.44973 + 0.218511i 1.44973 + 0.218511i 0.826239 0.563320i \(-0.190476\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.988831 + 1.71271i 0.988831 + 1.71271i
\(617\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(618\) 0 0
\(619\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 1.24402 0.848162i 1.24402 0.848162i
\(622\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(623\) −1.21135 1.12397i −1.21135 1.12397i
\(624\) −2.03759 2.55506i −2.03759 2.55506i
\(625\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.266948 + 0.680173i 0.266948 + 0.680173i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(632\) 0.0546039 0.728639i 0.0546039 0.728639i
\(633\) −0.702749 + 0.216769i −0.702749 + 0.216769i
\(634\) 0 0
\(635\) 0 0
\(636\) 0.246980 0.246980
\(637\) −1.97766 −1.97766
\(638\) 0 0
\(639\) −0.255779 + 0.0385525i −0.255779 + 0.0385525i
\(640\) 0 0
\(641\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(642\) 0.236007 3.14929i 0.236007 3.14929i
\(643\) 1.32091 + 0.636119i 1.32091 + 0.636119i 0.955573 0.294755i \(-0.0952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(644\) 1.24698 1.24698
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(648\) 0.0966613 0.246289i 0.0966613 0.246289i
\(649\) 0 0
\(650\) −1.23305 1.54620i −1.23305 1.54620i
\(651\) −1.08786 2.77183i −1.08786 2.77183i
\(652\) 1.24698 1.56366i 1.24698 1.56366i
\(653\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(660\) 0 0
\(661\) 1.78181 + 0.268565i 1.78181 + 0.268565i 0.955573 0.294755i \(-0.0952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(662\) 0 0
\(663\) 2.39564 + 2.22283i 2.39564 + 2.22283i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.733052 + 1.26968i 0.733052 + 1.26968i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 1.36534 0.930874i 1.36534 0.930874i
\(673\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(674\) 0 0
\(675\) 0.441126 1.12397i 0.441126 1.12397i
\(676\) 0.217550 + 2.90301i 0.217550 + 2.90301i
\(677\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.0184568 0.246289i 0.0184568 0.246289i
\(682\) 3.40530 1.05040i 3.40530 1.05040i
\(683\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.0747301 0.997204i 0.0747301 0.997204i
\(687\) −0.735422 −0.735422
\(688\) 0 0
\(689\) −0.244221 0.166507i −0.244221 0.166507i
\(690\) 0 0
\(691\) −0.134659 + 1.79690i −0.134659 + 1.79690i 0.365341 + 0.930874i \(0.380952\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 3.08375 1.48506i 3.08375 1.48506i
\(694\) 0.400969 0.193096i 0.400969 0.193096i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −0.425270 0.131178i −0.425270 0.131178i
\(699\) 0 0
\(700\) 0.826239 0.563320i 0.826239 0.563320i
\(701\) 0.0931869 0.116853i 0.0931869 0.116853i −0.733052 0.680173i \(-0.761905\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(702\) −1.97297 + 1.34515i −1.97297 + 1.34515i
\(703\) 0 0
\(704\) 0.988831 + 1.71271i 0.988831 + 1.71271i
\(705\) 0 0
\(706\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(707\) −1.23305 0.185853i −1.23305 0.185853i
\(708\) 0 0
\(709\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(710\) 0 0
\(711\) −1.25045 0.188476i −1.25045 0.188476i
\(712\) −1.21135 1.12397i −1.21135 1.12397i
\(713\) 0.500000 2.19064i 0.500000 2.19064i
\(714\) −1.21135 + 1.12397i −1.21135 + 1.12397i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.63402 + 1.11406i −1.63402 + 1.11406i −0.733052 + 0.680173i \(0.761905\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 1.75751 + 4.47806i 1.75751 + 4.47806i
\(727\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(728\) −1.97766 −1.97766
\(729\) 1.38511 + 0.667035i 1.38511 + 0.667035i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0.988831 0.149042i 0.988831 0.149042i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(734\) 1.91115 1.91115
\(735\) 0 0
\(736\) 1.24698 1.24698
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.0931869 0.116853i 0.0931869 0.116853i
\(743\) −1.48883 + 0.716983i −1.48883 + 0.716983i −0.988831 0.149042i \(-0.952381\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) −1.08786 2.77183i −1.08786 2.77183i
\(745\) 0 0
\(746\) −0.722521 + 1.84095i −0.722521 + 1.84095i
\(747\) 0 0
\(748\) −1.23305 1.54620i −1.23305 1.54620i
\(749\) −1.40097 1.29991i −1.40097 1.29991i
\(750\) 0 0
\(751\) 0.603718 0.411608i 0.603718 0.411608i −0.222521 0.974928i \(-0.571429\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.603718 1.04567i −0.603718 1.04567i
\(757\) 0.222521 0.974928i 0.222521 0.974928i −0.733052 0.680173i \(-0.761905\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(758\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(759\) 4.02966 + 0.607374i 4.02966 + 0.607374i
\(760\) 0 0
\(761\) 1.07473 + 0.997204i 1.07473 + 0.997204i 1.00000 \(0\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 1.36534 0.930874i 1.36534 0.930874i
\(769\) −0.623490 + 0.781831i −0.623490 + 0.781831i −0.988831 0.149042i \(-0.952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(770\) 0 0
\(771\) −1.03030 1.29196i −1.03030 1.29196i
\(772\) 0 0
\(773\) −0.535628 + 1.36476i −0.535628 + 1.36476i 0.365341 + 0.930874i \(0.380952\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(774\) 0 0
\(775\) −0.658322 1.67738i −0.658322 1.67738i
\(776\) 0 0
\(777\) 0 0
\(778\) 1.32091 + 0.636119i 1.32091 + 0.636119i
\(779\) 0 0
\(780\) 0 0
\(781\) −0.244221 0.166507i −0.244221 0.166507i
\(782\) −1.23305 + 0.185853i −1.23305 + 0.185853i
\(783\) 0 0
\(784\) 0.0747301 0.997204i 0.0747301 0.997204i
\(785\) 0 0
\(786\) −2.03759 + 0.307117i −2.03759 + 0.307117i
\(787\) −0.367711