Properties

Label 3332.1.be.c.1359.2
Level $3332$
Weight $1$
Character 3332.1359
Analytic conductor $1.663$
Analytic rank $0$
Dimension $12$
Projective image $D_{14}$
CM discriminant -68
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(407,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 10, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.407");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3332.be (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66288462209\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{14}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{14} - \cdots)\)

Embedding invariants

Embedding label 1359.2
Root \(-0.974928 + 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 3332.1359
Dual form 3332.1.be.c.407.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.222521 + 0.974928i) q^{2} +(0.974928 + 1.22252i) q^{3} +(-0.900969 + 0.433884i) q^{4} +(-0.974928 + 1.22252i) q^{6} +(-0.781831 + 0.623490i) q^{7} +(-0.623490 - 0.781831i) q^{8} +(-0.321552 + 1.40881i) q^{9} +O(q^{10})\) \(q+(0.222521 + 0.974928i) q^{2} +(0.974928 + 1.22252i) q^{3} +(-0.900969 + 0.433884i) q^{4} +(-0.974928 + 1.22252i) q^{6} +(-0.781831 + 0.623490i) q^{7} +(-0.623490 - 0.781831i) q^{8} +(-0.321552 + 1.40881i) q^{9} +(0.433884 + 1.90097i) q^{11} +(-1.40881 - 0.678448i) q^{12} +(-0.0990311 - 0.433884i) q^{13} +(-0.781831 - 0.623490i) q^{14} +(0.623490 - 0.781831i) q^{16} +(-0.900969 - 0.433884i) q^{17} -1.44504 q^{18} +(-1.52446 - 0.347948i) q^{21} +(-1.75676 + 0.846011i) q^{22} +(1.75676 - 0.846011i) q^{23} +(0.347948 - 1.52446i) q^{24} +(-0.222521 + 0.974928i) q^{25} +(0.400969 - 0.193096i) q^{26} +(-0.626980 + 0.301938i) q^{27} +(0.433884 - 0.900969i) q^{28} -1.56366 q^{31} +(0.900969 + 0.433884i) q^{32} +(-1.90097 + 2.38374i) q^{33} +(0.222521 - 0.974928i) q^{34} +(-0.321552 - 1.40881i) q^{36} +(0.433884 - 0.544073i) q^{39} -1.56366i q^{42} +(-1.21572 - 1.52446i) q^{44} +(1.21572 + 1.52446i) q^{46} +1.56366 q^{48} +(0.222521 - 0.974928i) q^{49} -1.00000 q^{50} +(-0.347948 - 1.52446i) q^{51} +(0.277479 + 0.347948i) q^{52} +(-1.12349 + 0.541044i) q^{53} +(-0.433884 - 0.544073i) q^{54} +(0.974928 + 0.222521i) q^{56} +(-0.347948 - 1.52446i) q^{62} +(-0.626980 - 1.30194i) q^{63} +(-0.222521 + 0.974928i) q^{64} +(-2.74698 - 1.32288i) q^{66} +1.00000 q^{68} +(2.74698 + 1.32288i) q^{69} +(1.40881 - 0.678448i) q^{71} +(1.30194 - 0.626980i) q^{72} +(-1.40881 + 0.678448i) q^{75} +(-1.52446 - 1.21572i) q^{77} +(0.626980 + 0.301938i) q^{78} +1.94986 q^{79} +(0.321552 + 0.154851i) q^{81} +(1.52446 - 0.347948i) q^{84} +(1.21572 - 1.52446i) q^{88} +(0.277479 - 1.21572i) q^{89} +(0.347948 + 0.277479i) q^{91} +(-1.21572 + 1.52446i) q^{92} +(-1.52446 - 1.91161i) q^{93} +(0.347948 + 1.52446i) q^{96} +1.00000 q^{98} -2.81762 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 2 q^{4} + 2 q^{8} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} - 2 q^{4} + 2 q^{8} - 12 q^{9} - 10 q^{13} - 2 q^{16} - 2 q^{17} - 16 q^{18} - 2 q^{25} - 4 q^{26} + 2 q^{32} - 14 q^{33} + 2 q^{34} - 12 q^{36} + 2 q^{49} - 12 q^{50} + 4 q^{52} - 4 q^{53} - 2 q^{64} - 14 q^{66} + 12 q^{68} + 14 q^{69} - 2 q^{72} + 12 q^{81} + 4 q^{89} + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\) \(1667\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{7}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(3\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(4\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(5\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(6\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(7\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(8\) −0.623490 0.781831i −0.623490 0.781831i
\(9\) −0.321552 + 1.40881i −0.321552 + 1.40881i
\(10\) 0 0
\(11\) 0.433884 + 1.90097i 0.433884 + 1.90097i 0.433884 + 0.900969i \(0.357143\pi\)
1.00000i \(0.500000\pi\)
\(12\) −1.40881 0.678448i −1.40881 0.678448i
\(13\) −0.0990311 0.433884i −0.0990311 0.433884i 0.900969 0.433884i \(-0.142857\pi\)
−1.00000 \(\pi\)
\(14\) −0.781831 0.623490i −0.781831 0.623490i
\(15\) 0 0
\(16\) 0.623490 0.781831i 0.623490 0.781831i
\(17\) −0.900969 0.433884i −0.900969 0.433884i
\(18\) −1.44504 −1.44504
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −1.52446 0.347948i −1.52446 0.347948i
\(22\) −1.75676 + 0.846011i −1.75676 + 0.846011i
\(23\) 1.75676 0.846011i 1.75676 0.846011i 0.781831 0.623490i \(-0.214286\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(24\) 0.347948 1.52446i 0.347948 1.52446i
\(25\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(26\) 0.400969 0.193096i 0.400969 0.193096i
\(27\) −0.626980 + 0.301938i −0.626980 + 0.301938i
\(28\) 0.433884 0.900969i 0.433884 0.900969i
\(29\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(30\) 0 0
\(31\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(32\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(33\) −1.90097 + 2.38374i −1.90097 + 2.38374i
\(34\) 0.222521 0.974928i 0.222521 0.974928i
\(35\) 0 0
\(36\) −0.321552 1.40881i −0.321552 1.40881i
\(37\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(38\) 0 0
\(39\) 0.433884 0.544073i 0.433884 0.544073i
\(40\) 0 0
\(41\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(42\) 1.56366i 1.56366i
\(43\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(44\) −1.21572 1.52446i −1.21572 1.52446i
\(45\) 0 0
\(46\) 1.21572 + 1.52446i 1.21572 + 1.52446i
\(47\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(48\) 1.56366 1.56366
\(49\) 0.222521 0.974928i 0.222521 0.974928i
\(50\) −1.00000 −1.00000
\(51\) −0.347948 1.52446i −0.347948 1.52446i
\(52\) 0.277479 + 0.347948i 0.277479 + 0.347948i
\(53\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(54\) −0.433884 0.544073i −0.433884 0.544073i
\(55\) 0 0
\(56\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(60\) 0 0
\(61\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(62\) −0.347948 1.52446i −0.347948 1.52446i
\(63\) −0.626980 1.30194i −0.626980 1.30194i
\(64\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(65\) 0 0
\(66\) −2.74698 1.32288i −2.74698 1.32288i
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 1.00000 1.00000
\(69\) 2.74698 + 1.32288i 2.74698 + 1.32288i
\(70\) 0 0
\(71\) 1.40881 0.678448i 1.40881 0.678448i 0.433884 0.900969i \(-0.357143\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(72\) 1.30194 0.626980i 1.30194 0.626980i
\(73\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(74\) 0 0
\(75\) −1.40881 + 0.678448i −1.40881 + 0.678448i
\(76\) 0 0
\(77\) −1.52446 1.21572i −1.52446 1.21572i
\(78\) 0.626980 + 0.301938i 0.626980 + 0.301938i
\(79\) 1.94986 1.94986 0.974928 0.222521i \(-0.0714286\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(80\) 0 0
\(81\) 0.321552 + 0.154851i 0.321552 + 0.154851i
\(82\) 0 0
\(83\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(84\) 1.52446 0.347948i 1.52446 0.347948i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 1.21572 1.52446i 1.21572 1.52446i
\(89\) 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(90\) 0 0
\(91\) 0.347948 + 0.277479i 0.347948 + 0.277479i
\(92\) −1.21572 + 1.52446i −1.21572 + 1.52446i
\(93\) −1.52446 1.91161i −1.52446 1.91161i
\(94\) 0 0
\(95\) 0 0
\(96\) 0.347948 + 1.52446i 0.347948 + 1.52446i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.00000 1.00000
\(99\) −2.81762 −2.81762
\(100\) −0.222521 0.974928i −0.222521 0.974928i
\(101\) 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(102\) 1.40881 0.678448i 1.40881 0.678448i
\(103\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(104\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(105\) 0 0
\(106\) −0.777479 0.974928i −0.777479 0.974928i
\(107\) −0.193096 + 0.846011i −0.193096 + 0.846011i 0.781831 + 0.623490i \(0.214286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(108\) 0.433884 0.544073i 0.433884 0.544073i
\(109\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000i 1.00000i
\(113\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.643104 0.643104
\(118\) 0 0
\(119\) 0.974928 0.222521i 0.974928 0.222521i
\(120\) 0 0
\(121\) −2.52446 + 1.21572i −2.52446 + 1.21572i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.40881 0.678448i 1.40881 0.678448i
\(125\) 0 0
\(126\) 1.12978 0.900969i 1.12978 0.900969i
\(127\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) −1.21572 + 1.52446i −1.21572 + 1.52446i −0.433884 + 0.900969i \(0.642857\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(132\) 0.678448 2.97247i 0.678448 2.97247i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(137\) −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i \(0.428571\pi\)
−1.00000 \(\pi\)
\(138\) −0.678448 + 2.97247i −0.678448 + 2.97247i
\(139\) 1.21572 + 1.52446i 1.21572 + 1.52446i 0.781831 + 0.623490i \(0.214286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(143\) 0.781831 0.376510i 0.781831 0.376510i
\(144\) 0.900969 + 1.12978i 0.900969 + 1.12978i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.40881 0.678448i 1.40881 0.678448i
\(148\) 0 0
\(149\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(150\) −0.974928 1.22252i −0.974928 1.22252i
\(151\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(152\) 0 0
\(153\) 0.900969 1.12978i 0.900969 1.12978i
\(154\) 0.846011 1.75676i 0.846011 1.75676i
\(155\) 0 0
\(156\) −0.154851 + 0.678448i −0.154851 + 0.678448i
\(157\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(158\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(159\) −1.75676 0.846011i −1.75676 0.846011i
\(160\) 0 0
\(161\) −0.846011 + 1.75676i −0.846011 + 1.75676i
\(162\) −0.0794168 + 0.347948i −0.0794168 + 0.347948i
\(163\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.781831 0.376510i −0.781831 0.376510i 1.00000i \(-0.5\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(168\) 0.678448 + 1.40881i 0.678448 + 1.40881i
\(169\) 0.722521 0.347948i 0.722521 0.347948i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(174\) 0 0
\(175\) −0.433884 0.900969i −0.433884 0.900969i
\(176\) 1.75676 + 0.846011i 1.75676 + 0.846011i
\(177\) 0 0
\(178\) 1.24698 1.24698
\(179\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(180\) 0 0
\(181\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(182\) −0.193096 + 0.400969i −0.193096 + 0.400969i
\(183\) 0 0
\(184\) −1.75676 0.846011i −1.75676 0.846011i
\(185\) 0 0
\(186\) 1.52446 1.91161i 1.52446 1.91161i
\(187\) 0.433884 1.90097i 0.433884 1.90097i
\(188\) 0 0
\(189\) 0.301938 0.626980i 0.301938 0.626980i
\(190\) 0 0
\(191\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(192\) −1.40881 + 0.678448i −1.40881 + 0.678448i
\(193\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −0.626980 2.74698i −0.626980 2.74698i
\(199\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(200\) 0.900969 0.433884i 0.900969 0.433884i
\(201\) 0 0
\(202\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(203\) 0 0
\(204\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(205\) 0 0
\(206\) 0 0
\(207\) 0.626980 + 2.74698i 0.626980 + 2.74698i
\(208\) −0.400969 0.193096i −0.400969 0.193096i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.193096 + 0.846011i −0.193096 + 0.846011i 0.781831 + 0.623490i \(0.214286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(212\) 0.777479 0.974928i 0.777479 0.974928i
\(213\) 2.20291 + 1.06086i 2.20291 + 1.06086i
\(214\) −0.867767 −0.867767
\(215\) 0 0
\(216\) 0.626980 + 0.301938i 0.626980 + 0.301938i
\(217\) 1.22252 0.974928i 1.22252 0.974928i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(222\) 0 0
\(223\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(224\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(225\) −1.30194 0.626980i −1.30194 0.626980i
\(226\) 0 0
\(227\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(228\) 0 0
\(229\) 1.12349 1.40881i 1.12349 1.40881i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(230\) 0 0
\(231\) 3.04892i 3.04892i
\(232\) 0 0
\(233\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(234\) 0.143104 + 0.626980i 0.143104 + 0.626980i
\(235\) 0 0
\(236\) 0 0
\(237\) 1.90097 + 2.38374i 1.90097 + 2.38374i
\(238\) 0.433884 + 0.900969i 0.433884 + 0.900969i
\(239\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(240\) 0 0
\(241\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(242\) −1.74698 2.19064i −1.74698 2.19064i
\(243\) 0.279032 + 1.22252i 0.279032 + 1.22252i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(252\) 1.12978 + 0.900969i 1.12978 + 0.900969i
\(253\) 2.37047 + 2.97247i 2.37047 + 2.97247i
\(254\) 0 0
\(255\) 0 0
\(256\) −0.222521 0.974928i −0.222521 0.974928i
\(257\) 1.80194 + 0.867767i 1.80194 + 0.867767i 0.900969 + 0.433884i \(0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −1.75676 0.846011i −1.75676 0.846011i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 3.04892 3.04892
\(265\) 0 0
\(266\) 0 0
\(267\) 1.75676 0.846011i 1.75676 0.846011i
\(268\) 0 0
\(269\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(270\) 0 0
\(271\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(272\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(273\) 0.695895i 0.695895i
\(274\) −1.12349 0.541044i −1.12349 0.541044i
\(275\) −1.94986 −1.94986
\(276\) −3.04892 −3.04892
\(277\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(278\) −1.21572 + 1.52446i −1.21572 + 1.52446i
\(279\) 0.502799 2.20291i 0.502799 2.20291i
\(280\) 0 0
\(281\) −0.445042 1.94986i −0.445042 1.94986i −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(282\) 0 0
\(283\) −0.433884 1.90097i −0.433884 1.90097i −0.433884 0.900969i \(-0.642857\pi\)
1.00000i \(-0.5\pi\)
\(284\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(285\) 0 0
\(286\) 0.541044 + 0.678448i 0.541044 + 0.678448i
\(287\) 0 0
\(288\) −0.900969 + 1.12978i −0.900969 + 1.12978i
\(289\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(294\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(295\) 0 0
\(296\) 0 0
\(297\) −0.846011 1.06086i −0.846011 1.06086i
\(298\) 1.12349 0.541044i 1.12349 0.541044i
\(299\) −0.541044 0.678448i −0.541044 0.678448i
\(300\) 0.974928 1.22252i 0.974928 1.22252i
\(301\) 0 0
\(302\) 0 0
\(303\) −0.154851 + 0.678448i −0.154851 + 0.678448i
\(304\) 0 0
\(305\) 0 0
\(306\) 1.30194 + 0.626980i 1.30194 + 0.626980i
\(307\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(308\) 1.90097 + 0.433884i 1.90097 + 0.433884i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(312\) −0.695895 −0.695895
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −0.400969 0.193096i −0.400969 0.193096i
\(315\) 0 0
\(316\) −1.75676 + 0.846011i −1.75676 + 0.846011i
\(317\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(318\) 0.433884 1.90097i 0.433884 1.90097i
\(319\) 0 0
\(320\) 0 0
\(321\) −1.22252 + 0.588735i −1.22252 + 0.588735i
\(322\) −1.90097 0.433884i −1.90097 0.433884i
\(323\) 0 0
\(324\) −0.356896 −0.356896
\(325\) 0.445042 0.445042
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0.193096 0.846011i 0.193096 0.846011i
\(335\) 0 0
\(336\) −1.22252 + 0.974928i −1.22252 + 0.974928i
\(337\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(338\) 0.500000 + 0.626980i 0.500000 + 0.626980i
\(339\) 0 0
\(340\) 0 0
\(341\) −0.678448 2.97247i −0.678448 2.97247i
\(342\) 0 0
\(343\) 0.433884 + 0.900969i 0.433884 + 0.900969i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.781831 + 0.376510i −0.781831 + 0.376510i −0.781831 0.623490i \(-0.785714\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(350\) 0.781831 0.623490i 0.781831 0.623490i
\(351\) 0.193096 + 0.242135i 0.193096 + 0.242135i
\(352\) −0.433884 + 1.90097i −0.433884 + 1.90097i
\(353\) 1.24698 1.56366i 1.24698 1.56366i 0.623490 0.781831i \(-0.285714\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.277479 + 1.21572i 0.277479 + 1.21572i
\(357\) 1.22252 + 0.974928i 1.22252 + 0.974928i
\(358\) 0 0
\(359\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −3.94740 1.90097i −3.94740 1.90097i
\(364\) −0.433884 0.0990311i −0.433884 0.0990311i
\(365\) 0 0
\(366\) 0 0
\(367\) 0.193096 0.846011i 0.193096 0.846011i −0.781831 0.623490i \(-0.785714\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(368\) 0.433884 1.90097i 0.433884 1.90097i
\(369\) 0 0
\(370\) 0 0
\(371\) 0.541044 1.12349i 0.541044 1.12349i
\(372\) 2.20291 + 1.06086i 2.20291 + 1.06086i
\(373\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(374\) 1.94986 1.94986
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0.678448 + 0.154851i 0.678448 + 0.154851i
\(379\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(384\) −0.974928 1.22252i −0.974928 1.22252i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.12349 + 1.40881i 1.12349 + 1.40881i 0.900969 + 0.433884i \(0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(390\) 0 0
\(391\) −1.94986 −1.94986
\(392\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(393\) −3.04892 −3.04892
\(394\) 0 0
\(395\) 0 0
\(396\) 2.53859 1.22252i 2.53859 1.22252i
\(397\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(398\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(399\) 0 0
\(400\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(401\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(402\) 0 0
\(403\) 0.154851 + 0.678448i 0.154851 + 0.678448i
\(404\) −0.400969 0.193096i −0.400969 0.193096i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(409\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(410\) 0 0
\(411\) −1.94986 −1.94986
\(412\) 0 0
\(413\) 0 0
\(414\) −2.53859 + 1.22252i −2.53859 + 1.22252i
\(415\) 0 0
\(416\) 0.0990311 0.433884i 0.0990311 0.433884i
\(417\) −0.678448 + 2.97247i −0.678448 + 2.97247i
\(418\) 0 0
\(419\) −1.75676 + 0.846011i −1.75676 + 0.846011i −0.781831 + 0.623490i \(0.785714\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(420\) 0 0
\(421\) 1.12349 + 0.541044i 1.12349 + 0.541044i 0.900969 0.433884i \(-0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(422\) −0.867767 −0.867767
\(423\) 0 0
\(424\) 1.12349 + 0.541044i 1.12349 + 0.541044i
\(425\) 0.623490 0.781831i 0.623490 0.781831i
\(426\) −0.544073 + 2.38374i −0.544073 + 2.38374i
\(427\) 0 0
\(428\) −0.193096 0.846011i −0.193096 0.846011i
\(429\) 1.22252 + 0.588735i 1.22252 + 0.588735i
\(430\) 0 0
\(431\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(432\) −0.154851 + 0.678448i −0.154851 + 0.678448i
\(433\) 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(434\) 1.22252 + 0.974928i 1.22252 + 0.974928i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.433884 + 1.90097i 0.433884 + 1.90097i 0.433884 + 0.900969i \(0.357143\pi\)
1.00000i \(0.500000\pi\)
\(440\) 0 0
\(441\) 1.30194 + 0.626980i 1.30194 + 0.626980i
\(442\) −0.445042 −0.445042
\(443\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.21572 1.52446i 1.21572 1.52446i
\(448\) −0.433884 0.900969i −0.433884 0.900969i
\(449\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(450\) 0.321552 1.40881i 0.321552 1.40881i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.347948 + 1.52446i 0.347948 + 1.52446i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(458\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(459\) 0.695895 0.695895
\(460\) 0 0
\(461\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(462\) 2.97247 0.678448i 2.97247 0.678448i
\(463\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(468\) −0.579417 + 0.279032i −0.579417 + 0.279032i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.695895 −0.695895
\(472\) 0 0
\(473\) 0 0
\(474\) −1.90097 + 2.38374i −1.90097 + 2.38374i
\(475\) 0 0
\(476\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(477\) −0.400969 1.75676i −0.400969 1.75676i
\(478\) 0 0
\(479\) −0.433884 1.90097i −0.433884 1.90097i −0.433884 0.900969i \(-0.642857\pi\)
1.00000i \(-0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −2.97247 + 0.678448i −2.97247 + 0.678448i
\(484\) 1.74698 2.19064i 1.74698 2.19064i
\(485\) 0 0
\(486\) −1.12978 + 0.544073i −1.12978 + 0.544073i
\(487\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(497\) −0.678448 + 1.40881i −0.678448 + 1.40881i
\(498\) 0 0
\(499\) 0.433884 1.90097i 0.433884 1.90097i 1.00000i \(-0.5\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(500\) 0 0
\(501\) −0.301938 1.32288i −0.301938 1.32288i
\(502\) 0 0
\(503\) −0.193096 0.846011i −0.193096 0.846011i −0.974928 0.222521i \(-0.928571\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(504\) −0.626980 + 1.30194i −0.626980 + 1.30194i
\(505\) 0 0
\(506\) −2.37047 + 2.97247i −2.37047 + 2.97247i
\(507\) 1.12978 + 0.544073i 1.12978 + 0.544073i
\(508\) 0 0
\(509\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.900969 0.433884i 0.900969 0.433884i
\(513\) 0 0
\(514\) −0.445042 + 1.94986i −0.445042 + 1.94986i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(524\) 0.433884 1.90097i 0.433884 1.90097i
\(525\) 0.678448 1.40881i 0.678448 1.40881i
\(526\) 0 0
\(527\) 1.40881 + 0.678448i 1.40881 + 0.678448i
\(528\) 0.678448 + 2.97247i 0.678448 + 2.97247i
\(529\) 1.74698 2.19064i 1.74698 2.19064i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 1.21572 + 1.52446i 1.21572 + 1.52446i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.94986 1.94986
\(540\) 0 0
\(541\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.623490 0.781831i −0.623490 0.781831i
\(545\) 0 0
\(546\) −0.678448 + 0.154851i −0.678448 + 0.154851i
\(547\) 0.541044 + 0.678448i 0.541044 + 0.678448i 0.974928 0.222521i \(-0.0714286\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(548\) 0.277479 1.21572i 0.277479 1.21572i
\(549\) 0 0
\(550\) −0.433884 1.90097i −0.433884 1.90097i
\(551\) 0 0
\(552\) −0.678448 2.97247i −0.678448 2.97247i
\(553\) −1.52446 + 1.21572i −1.52446 + 1.21572i
\(554\) 0 0
\(555\) 0 0
\(556\) −1.75676 0.846011i −1.75676 0.846011i
\(557\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(558\) 2.25956 2.25956
\(559\) 0 0
\(560\) 0 0
\(561\) 2.74698 1.32288i 2.74698 1.32288i
\(562\) 1.80194 0.867767i 1.80194 0.867767i
\(563\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.75676 0.846011i 1.75676 0.846011i
\(567\) −0.347948 + 0.0794168i −0.347948 + 0.0794168i
\(568\) −1.40881 0.678448i −1.40881 0.678448i
\(569\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(570\) 0 0
\(571\) 1.40881 + 0.678448i 1.40881 + 0.678448i 0.974928 0.222521i \(-0.0714286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(572\) −0.541044 + 0.678448i −0.541044 + 0.678448i
\(573\) 0 0
\(574\) 0 0
\(575\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(576\) −1.30194 0.626980i −1.30194 0.626980i
\(577\) −0.400969 1.75676i −0.400969 1.75676i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(578\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.51597 1.90097i −1.51597 1.90097i
\(584\) 0 0
\(585\) 0 0
\(586\) −0.0990311 0.433884i −0.0990311 0.433884i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(594\) 0.846011 1.06086i 0.846011 1.06086i
\(595\) 0 0
\(596\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(597\) −0.544073 + 2.38374i −0.544073 + 2.38374i
\(598\) 0.541044 0.678448i 0.541044 0.678448i
\(599\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(600\) 1.40881 + 0.678448i 1.40881 + 0.678448i
\(601\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −0.695895 −0.695895
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.321552 + 1.40881i −0.321552 + 1.40881i
\(613\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.94986i 1.94986i
\(617\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −0.846011 + 1.06086i −0.846011 + 1.06086i
\(622\) 0 0
\(623\) 0.541044 + 1.12349i 0.541044 + 1.12349i
\(624\) −0.154851 0.678448i −0.154851 0.678448i
\(625\) −0.900969 0.433884i −0.900969 0.433884i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.0990311 0.433884i 0.0990311 0.433884i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(632\) −1.21572 1.52446i −1.21572 1.52446i
\(633\) −1.22252 + 0.588735i −1.22252 + 0.588735i
\(634\) 0 0
\(635\) 0 0
\(636\) 1.94986 1.94986
\(637\) −0.445042 −0.445042
\(638\) 0 0
\(639\) 0.502799 + 2.20291i 0.502799 + 2.20291i
\(640\) 0 0
\(641\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(642\) −0.846011 1.06086i −0.846011 1.06086i
\(643\) 0.541044 0.678448i 0.541044 0.678448i −0.433884 0.900969i \(-0.642857\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(644\) 1.94986i 1.94986i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(648\) −0.0794168 0.347948i −0.0794168 0.347948i
\(649\) 0 0
\(650\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i
\(651\) 2.38374 + 0.544073i 2.38374 + 0.544073i
\(652\) 0 0
\(653\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(660\) 0 0
\(661\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(662\) 0 0
\(663\) −0.626980 + 0.301938i −0.626980 + 0.301938i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.867767 0.867767
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −1.22252 0.974928i −1.22252 0.974928i
\(673\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(674\) 0 0
\(675\) −0.154851 0.678448i −0.154851 0.678448i
\(676\) −0.500000 + 0.626980i −0.500000 + 0.626980i
\(677\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.52446 + 1.91161i 1.52446 + 1.91161i
\(682\) 2.74698 1.32288i 2.74698 1.32288i
\(683\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(687\) 2.81762 2.81762
\(688\) 0 0
\(689\) 0.346011 + 0.433884i 0.346011 + 0.433884i
\(690\) 0 0
\(691\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 2.20291 1.75676i 2.20291 1.75676i
\(694\) −0.541044 0.678448i −0.541044 0.678448i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −1.62349 0.781831i −1.62349 0.781831i
\(699\) 0 0
\(700\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(701\) 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(702\) −0.193096 + 0.242135i −0.193096 + 0.242135i
\(703\) 0 0
\(704\) −1.94986 −1.94986
\(705\) 0 0
\(706\) 1.80194 + 0.867767i 1.80194 + 0.867767i
\(707\) −0.433884 0.0990311i −0.433884 0.0990311i
\(708\) 0 0
\(709\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(710\) 0 0
\(711\) −0.626980 + 2.74698i −0.626980 + 2.74698i
\(712\) −1.12349 + 0.541044i −1.12349 + 0.541044i
\(713\) −2.74698 + 1.32288i −2.74698 + 1.32288i
\(714\) −0.678448 + 1.40881i −0.678448 + 1.40881i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.21572 + 1.52446i −1.21572 + 1.52446i −0.433884 + 0.900969i \(0.642857\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.974928 4.27144i 0.974928 4.27144i
\(727\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(728\) 0.445042i 0.445042i
\(729\) −1.00000 + 1.25396i −1.00000 + 1.25396i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.445042 1.94986i −0.445042 1.94986i −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(734\) 0.867767 0.867767
\(735\) 0 0
\(736\) 1.94986 1.94986
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.21572 + 0.277479i 1.21572 + 0.277479i
\(743\) −0.974928 1.22252i −0.974928 1.22252i −0.974928 0.222521i \(-0.928571\pi\)
1.00000i \(-0.5\pi\)
\(744\) −0.544073 + 2.38374i −0.544073 + 2.38374i
\(745\) 0 0
\(746\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i
\(747\) 0 0
\(748\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(749\) −0.376510 0.781831i −0.376510 0.781831i
\(750\) 0 0
\(751\) −1.21572 + 1.52446i −1.21572 + 1.52446i −0.433884 + 0.900969i \(0.642857\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.695895i 0.695895i
\(757\) 1.80194 0.867767i 1.80194 0.867767i 0.900969 0.433884i \(-0.142857\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(758\) 0 0
\(759\) −1.32288 + 5.79590i −1.32288 + 5.79590i
\(760\) 0 0
\(761\) −1.62349 + 0.781831i −1.62349 + 0.781831i −0.623490 + 0.781831i \(0.714286\pi\)
−1.00000 \(1.00000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.974928 1.22252i 0.974928 1.22252i
\(769\) 0.445042 1.94986i 0.445042 1.94986i 0.222521 0.974928i \(-0.428571\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(770\) 0 0
\(771\) 0.695895 + 3.04892i 0.695895 + 3.04892i
\(772\) 0 0
\(773\) −0.400969 1.75676i −0.400969 1.75676i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(774\) 0 0
\(775\) 0.347948 1.52446i 0.347948 1.52446i
\(776\) 0 0
\(777\) 0 0
\(778\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(779\) 0 0
\(780\) 0 0
\(781\) 1.90097 + 2.38374i 1.90097 + 2.38374i
\(782\) −0.433884 1.90097i −0.433884 1.90097i
\(783\) 0 0
\(784\) −0.623490 0.781831i −0.623490 0.781831i
\(785\) 0 0
\(786\) −0.678448 2.97247i −0.678448 2.97247i
\(787\) 0.541044 + 0.678448i 0.541044 + 0.678448i 0.974928 0.222521i \(-0.0714286\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(788\) 0 0
\(789\)