Properties

Label 3300.2.u
Level $3300$
Weight $2$
Character orbit 3300.u
Rep. character $\chi_{3300}(2443,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $360$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3300.u (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3300, [\chi])\).

Total New Old
Modular forms 1488 360 1128
Cusp forms 1392 360 1032
Eisenstein series 96 0 96

Trace form

\( 360 q - 16 q^{6} - 24 q^{8} - 8 q^{13} + 16 q^{16} - 40 q^{17} + 32 q^{26} - 8 q^{28} + 16 q^{36} + 8 q^{37} - 24 q^{38} + 40 q^{42} + 32 q^{46} + 32 q^{48} - 32 q^{52} + 8 q^{53} - 32 q^{56} - 8 q^{58}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3300, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3300, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(660, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1100, [\chi])\)\(^{\oplus 2}\)