Properties

Label 32634.2.a.bh
Level $32634$
Weight $2$
Character orbit 32634.a
Self dual yes
Analytic conductor $260.584$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32634,2,Mod(1,32634)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32634.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32634, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 32634 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 32634.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,0,1,4,0,0,-1,0,-4,4,0,-5,0,0,1,-7,0,8,4,0,-4,1,0,11,5,0, 0,4,0,2,-1,0,7,0,0,-1,-8,0,-4,-2,0,-9,4,0,-1,-6,0,0,-11,0,-5,1,0,16,0, 0,-4,-6,0,1,-2,0,1,-20,0,-4,-7,0,0,8,0,1,1,0,8,0,0,0,4,0,2,13,0,-28,9, 0,-4,1,0,0,1,0,6,32,0,8,0,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(260.583801956\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{4} + 4 q^{5} - q^{8} - 4 q^{10} + 4 q^{11} - 5 q^{13} + q^{16} - 7 q^{17} + 8 q^{19} + 4 q^{20} - 4 q^{22} + q^{23} + 11 q^{25} + 5 q^{26} + 4 q^{29} + 2 q^{31} - q^{32} + 7 q^{34}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(37\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.