Properties

Label 3249.2.d
Level $3249$
Weight $2$
Character orbit 3249.d
Rep. character $\chi_{3249}(3248,\cdot)$
Character field $\Q$
Dimension $112$
Sturm bound $760$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q\)
Sturm bound: \(760\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3249, [\chi])\).

Total New Old
Modular forms 420 112 308
Cusp forms 340 112 228
Eisenstein series 80 0 80

Trace form

\( 112 q + 116 q^{4} + 8 q^{7} + 108 q^{16} - 112 q^{25} + 24 q^{28} - 16 q^{43} + 88 q^{49} + 16 q^{55} - 48 q^{58} - 40 q^{61} + 204 q^{64} - 72 q^{73} + 48 q^{82} + 80 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3249, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3249, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3249, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1083, [\chi])\)\(^{\oplus 2}\)