Properties

Label 324.4.h
Level $324$
Weight $4$
Character orbit 324.h
Rep. character $\chi_{324}(107,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $140$
Sturm bound $216$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(216\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(324, [\chi])\).

Total New Old
Modular forms 348 148 200
Cusp forms 300 140 160
Eisenstein series 48 8 40

Trace form

\( 140 q + 2 q^{4} + 28 q^{10} + 4 q^{13} + 2 q^{16} + 18 q^{22} + 1554 q^{25} + 252 q^{28} + 976 q^{34} - 8 q^{37} + 202 q^{40} - 216 q^{46} + 2846 q^{49} + 1048 q^{52} + 580 q^{58} + 4 q^{61} - 2884 q^{64}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(324, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(324, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(324, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)