Properties

Label 320.5.r
Level $320$
Weight $5$
Character orbit 320.r
Rep. character $\chi_{320}(111,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $64$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 320.r (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(320, [\chi])\).

Total New Old
Modular forms 400 64 336
Cusp forms 368 64 304
Eisenstein series 32 0 32

Trace form

\( 64 q + 192 q^{11} - 704 q^{19} + 2304 q^{23} - 3648 q^{27} - 1728 q^{29} + 3648 q^{37} + 5376 q^{39} - 5568 q^{43} + 21952 q^{49} - 9728 q^{51} + 960 q^{53} + 960 q^{59} + 3776 q^{61} + 18880 q^{67} - 9792 q^{69}+ \cdots + 49216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(320, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
320.5.r.a 320.r 16.f $64$ $33.078$ None 80.5.r.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{5}^{\mathrm{old}}(320, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(320, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)