Properties

Label 32.30.b
Level $32$
Weight $30$
Character orbit 32.b
Rep. character $\chi_{32}(17,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 30 \)
Character orbit: \([\chi]\) \(=\) 32.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{30}(32, [\chi])\).

Total New Old
Modular forms 120 30 90
Cusp forms 112 28 84
Eisenstein series 8 2 6

Trace form

\( 28 q - 1356446145696 q^{7} - 594796603828988 q^{9} + 11\!\cdots\!36 q^{15} + 23\!\cdots\!00 q^{17} - 14\!\cdots\!16 q^{23} - 98\!\cdots\!84 q^{25} + 72\!\cdots\!56 q^{31} - 26\!\cdots\!52 q^{33} - 74\!\cdots\!84 q^{39}+ \cdots - 61\!\cdots\!16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{30}^{\mathrm{new}}(32, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
32.30.b.a 32.b 8.b $28$ $170.490$ None 8.30.b.a \(0\) \(0\) \(0\) \(-13\!\cdots\!96\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{30}^{\mathrm{old}}(32, [\chi])\) into lower level spaces

\( S_{30}^{\mathrm{old}}(32, [\chi]) \simeq \) \(S_{30}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)