Properties

Label 3192.2.r
Level $3192$
Weight $2$
Character orbit 3192.r
Rep. character $\chi_{3192}(1331,\cdot)$
Character field $\Q$
Dimension $432$
Sturm bound $1280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3192.r (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Sturm bound: \(1280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3192, [\chi])\).

Total New Old
Modular forms 648 432 216
Cusp forms 632 432 200
Eisenstein series 16 0 16

Trace form

\( 432 q + 12 q^{6} + 16 q^{10} + 12 q^{12} + 32 q^{16} + 12 q^{18} - 16 q^{24} + 432 q^{25} + 48 q^{27} + 16 q^{28} + 36 q^{30} - 8 q^{36} - 16 q^{40} + 20 q^{42} - 64 q^{43} + 16 q^{46} - 40 q^{48} - 432 q^{49}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3192, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3192, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3192, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)