Defining parameters
Level: | \( N \) | \(=\) | \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3168.m (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 264 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3168, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 608 | 48 | 560 |
Cusp forms | 544 | 48 | 496 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3168, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
3168.2.m.a | $4$ | $25.297$ | \(\Q(\sqrt{-2}, \sqrt{-11})\) | \(\Q(\sqrt{-22}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{11}+(-2-\beta _{1})q^{13}+(-4+\beta _{1}+\cdots)q^{19}+\cdots\) |
3168.2.m.b | $4$ | $25.297$ | \(\Q(\sqrt{-2}, \sqrt{-11})\) | \(\Q(\sqrt{-22}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{11}+(2+\beta _{1})q^{13}+(4-\beta _{1})q^{19}+\cdots\) |
3168.2.m.c | $40$ | $25.297$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(3168, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3168, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(792, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1056, [\chi])\)\(^{\oplus 2}\)