Properties

Label 3168.2.d
Level $3168$
Weight $2$
Character orbit 3168.d
Rep. character $\chi_{3168}(287,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $4$
Sturm bound $1152$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(1152\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3168, [\chi])\).

Total New Old
Modular forms 608 40 568
Cusp forms 544 40 504
Eisenstein series 64 0 64

Trace form

\( 40 q - 32 q^{13} - 40 q^{25} + 48 q^{37} - 8 q^{49} + 16 q^{61} - 32 q^{73} - 16 q^{85} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3168, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3168.2.d.a 3168.d 12.b $8$ $25.297$ 8.0.110166016.2 None 3168.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{5}+(-\beta _{1}+\beta _{3})q^{7}-q^{11}+\cdots\)
3168.2.d.b 3168.d 12.b $8$ $25.297$ 8.0.110166016.2 None 3168.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{5}+(\beta _{1}-\beta _{3})q^{7}+q^{11}+\cdots\)
3168.2.d.c 3168.d 12.b $12$ $25.297$ 12.0.\(\cdots\).1 None 3168.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{5}-\beta _{10}q^{7}-q^{11}-\beta _{8}q^{13}+\cdots\)
3168.2.d.d 3168.d 12.b $12$ $25.297$ 12.0.\(\cdots\).1 None 3168.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{5}-\beta _{10}q^{7}+q^{11}-\beta _{8}q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(3168, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3168, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(396, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1056, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1584, [\chi])\)\(^{\oplus 2}\)