Properties

Label 3168.2.ca
Level $3168$
Weight $2$
Character orbit 3168.ca
Rep. character $\chi_{3168}(17,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $192$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.ca (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 264 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3168, [\chi])\).

Total New Old
Modular forms 2432 192 2240
Cusp forms 2176 192 1984
Eisenstein series 256 0 256

Trace form

\( 192 q - 48 q^{25} + 48 q^{49} - 32 q^{55} - 80 q^{79} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3168, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3168, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3168, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(792, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1056, [\chi])\)\(^{\oplus 2}\)