Defining parameters
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.bf (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(315, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 44 | 68 |
Cusp forms | 80 | 36 | 44 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(315, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
315.2.bf.a | $4$ | $2.515$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+\zeta_{12}q^{2}-\zeta_{12}^{2}q^{4}+(1-2\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{5}+\cdots\) |
315.2.bf.b | $16$ | $2.515$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+(-\beta _{5}+\beta _{6}-\beta _{15})q^{2}+(1-\beta _{2}+\beta _{7}+\cdots)q^{4}+\cdots\) |
315.2.bf.c | $16$ | $2.515$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{9}q^{2}+(1+\beta _{5}-\beta _{8})q^{4}+(\beta _{1}+\beta _{9}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(315, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)