Properties

Label 315.2.bf
Level $315$
Weight $2$
Character orbit 315.bf
Rep. character $\chi_{315}(109,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $36$
Newform subspaces $3$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.bf (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(315, [\chi])\).

Total New Old
Modular forms 112 44 68
Cusp forms 80 36 44
Eisenstein series 32 8 24

Trace form

\( 36 q + 14 q^{4} + 16 q^{14} - 14 q^{16} + 4 q^{19} + 4 q^{20} - 14 q^{25} + 16 q^{26} + 4 q^{29} - 28 q^{31} - 72 q^{34} + 26 q^{35} + 28 q^{40} - 36 q^{41} - 20 q^{44} - 18 q^{46} - 14 q^{49} + 24 q^{50}+ \cdots + 10 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
315.2.bf.a 315.bf 35.j $4$ $2.515$ \(\Q(\zeta_{12})\) None 35.2.j.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}-\zeta_{12}^{2}q^{4}+(1-2\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{5}+\cdots\)
315.2.bf.b 315.bf 35.j $16$ $2.515$ 16.0.\(\cdots\).1 None 105.2.q.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{5}+\beta _{6}-\beta _{15})q^{2}+(1-\beta _{2}+\beta _{7}+\cdots)q^{4}+\cdots\)
315.2.bf.c 315.bf 35.j $16$ $2.515$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 315.2.bf.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{9}q^{2}+(1+\beta _{5}-\beta _{8})q^{4}+(\beta _{1}+\beta _{9}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)