Properties

Label 315.10.j
Level $315$
Weight $10$
Character orbit 315.j
Rep. character $\chi_{315}(46,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $240$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(315, [\chi])\).

Total New Old
Modular forms 880 240 640
Cusp forms 848 240 608
Eisenstein series 32 0 32

Trace form

\( 240 q + 34 q^{2} - 30890 q^{4} + 1250 q^{5} + 1140 q^{7} - 67932 q^{8} - 20000 q^{10} - 109734 q^{11} - 441856 q^{13} - 25882 q^{14} - 8276574 q^{16} + 609420 q^{17} + 1006502 q^{19} - 2825000 q^{20} + 2965664 q^{22}+ \cdots + 4899763562 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)