Properties

Label 31.4.d
Level $31$
Weight $4$
Character orbit 31.d
Rep. character $\chi_{31}(2,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $28$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 31.d (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(31, [\chi])\).

Total New Old
Modular forms 36 36 0
Cusp forms 28 28 0
Eisenstein series 8 8 0

Trace form

\( 28 q - 3 q^{2} - 7 q^{3} - 39 q^{4} + 38 q^{6} + 35 q^{7} - 17 q^{8} - 16 q^{9} + 54 q^{10} - 17 q^{11} - 130 q^{12} - 21 q^{13} + 2 q^{14} - 154 q^{15} + 169 q^{16} - 49 q^{17} + 6 q^{18} + 149 q^{19}+ \cdots + 4004 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(31, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
31.4.d.a 31.d 31.d $28$ $1.829$ None 31.4.d.a \(-3\) \(-7\) \(0\) \(35\) $\mathrm{SU}(2)[C_{5}]$