Properties

Label 3087.2.a.f.1.3
Level $3087$
Weight $2$
Character 3087.1
Self dual yes
Analytic conductor $24.650$
Analytic rank $0$
Dimension $3$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3087,2,Mod(1,3087)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3087, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3087.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3087 = 3^{2} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3087.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.6498191040\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 343)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.3
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 3087.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.80194 q^{2} +5.85086 q^{4} +10.7899 q^{8} +O(q^{10})\) \(q+2.80194 q^{2} +5.85086 q^{4} +10.7899 q^{8} +1.64310 q^{11} +18.5308 q^{16} +4.60388 q^{22} +4.91185 q^{23} -5.00000 q^{25} -2.78986 q^{29} +30.3424 q^{32} -12.0151 q^{37} -2.48858 q^{43} +9.61356 q^{44} +13.7627 q^{46} -14.0097 q^{50} +8.09246 q^{53} -7.81700 q^{58} +47.9560 q^{64} -10.4916 q^{67} +8.71917 q^{71} -33.6655 q^{74} +13.6963 q^{79} -6.97285 q^{86} +17.7289 q^{88} +28.7385 q^{92} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{2} + 4 q^{4} + 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 4 q^{2} + 4 q^{4} + 9 q^{8} + 9 q^{11} + 18 q^{16} + 5 q^{22} + 11 q^{23} - 15 q^{25} + 15 q^{29} + 27 q^{32} - 11 q^{37} - q^{43} - 2 q^{44} + 24 q^{46} - 20 q^{50} + 9 q^{53} + 6 q^{58} + 49 q^{64} + 19 q^{67} + 15 q^{71} - 17 q^{74} + 17 q^{79} - 27 q^{86} + 20 q^{88} + 31 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.80194 1.98127 0.990635 0.136540i \(-0.0435982\pi\)
0.990635 + 0.136540i \(0.0435982\pi\)
\(3\) 0 0
\(4\) 5.85086 2.92543
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 10.7899 3.81479
\(9\) 0 0
\(10\) 0 0
\(11\) 1.64310 0.495415 0.247707 0.968835i \(-0.420323\pi\)
0.247707 + 0.968835i \(0.420323\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 18.5308 4.63270
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.60388 0.981550
\(23\) 4.91185 1.02419 0.512096 0.858928i \(-0.328869\pi\)
0.512096 + 0.858928i \(0.328869\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.78986 −0.518063 −0.259032 0.965869i \(-0.583403\pi\)
−0.259032 + 0.965869i \(0.583403\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 30.3424 5.36383
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −12.0151 −1.97526 −0.987632 0.156788i \(-0.949886\pi\)
−0.987632 + 0.156788i \(0.949886\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −2.48858 −0.379505 −0.189753 0.981832i \(-0.560769\pi\)
−0.189753 + 0.981832i \(0.560769\pi\)
\(44\) 9.61356 1.44930
\(45\) 0 0
\(46\) 13.7627 2.02920
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −14.0097 −1.98127
\(51\) 0 0
\(52\) 0 0
\(53\) 8.09246 1.11158 0.555792 0.831321i \(-0.312415\pi\)
0.555792 + 0.831321i \(0.312415\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −7.81700 −1.02642
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 47.9560 5.99450
\(65\) 0 0
\(66\) 0 0
\(67\) −10.4916 −1.28175 −0.640874 0.767646i \(-0.721428\pi\)
−0.640874 + 0.767646i \(0.721428\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.71917 1.03477 0.517387 0.855751i \(-0.326905\pi\)
0.517387 + 0.855751i \(0.326905\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −33.6655 −3.91353
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.6963 1.54096 0.770479 0.637465i \(-0.220017\pi\)
0.770479 + 0.637465i \(0.220017\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −6.97285 −0.751902
\(87\) 0 0
\(88\) 17.7289 1.88990
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 28.7385 2.99620
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −29.2543 −2.92543
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 22.6746 2.20235
\(107\) −20.3153 −1.96395 −0.981976 0.189006i \(-0.939473\pi\)
−0.981976 + 0.189006i \(0.939473\pi\)
\(108\) 0 0
\(109\) −14.3230 −1.37190 −0.685949 0.727649i \(-0.740613\pi\)
−0.685949 + 0.727649i \(0.740613\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.3013 1.43942 0.719711 0.694273i \(-0.244274\pi\)
0.719711 + 0.694273i \(0.244274\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −16.3230 −1.51556
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.30021 −0.754564
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 22.3870 1.98653 0.993264 0.115876i \(-0.0369675\pi\)
0.993264 + 0.115876i \(0.0369675\pi\)
\(128\) 73.6848 6.51288
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −29.3967 −2.53949
\(135\) 0 0
\(136\) 0 0
\(137\) −18.1933 −1.55436 −0.777178 0.629281i \(-0.783350\pi\)
−0.777178 + 0.629281i \(0.783350\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 24.4306 2.05017
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −70.2984 −5.77849
\(149\) −5.44265 −0.445879 −0.222940 0.974832i \(-0.571565\pi\)
−0.222940 + 0.974832i \(0.571565\pi\)
\(150\) 0 0
\(151\) −19.1008 −1.55440 −0.777201 0.629252i \(-0.783361\pi\)
−0.777201 + 0.629252i \(0.783361\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 38.3763 3.05305
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.9269 1.56080 0.780398 0.625283i \(-0.215016\pi\)
0.780398 + 0.625283i \(0.215016\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −14.5603 −1.11022
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 30.4480 2.29511
\(177\) 0 0
\(178\) 0 0
\(179\) −24.9041 −1.86142 −0.930709 0.365760i \(-0.880809\pi\)
−0.930709 + 0.365760i \(0.880809\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 52.9982 3.90708
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −25.6732 −1.85765 −0.928825 0.370519i \(-0.879180\pi\)
−0.928825 + 0.370519i \(0.879180\pi\)
\(192\) 0 0
\(193\) −7.03385 −0.506308 −0.253154 0.967426i \(-0.581468\pi\)
−0.253154 + 0.967426i \(0.581468\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −28.0170 −1.99613 −0.998064 0.0621994i \(-0.980189\pi\)
−0.998064 + 0.0621994i \(0.980189\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −53.9493 −3.81479
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.667858 −0.0459773 −0.0229886 0.999736i \(-0.507318\pi\)
−0.0229886 + 0.999736i \(0.507318\pi\)
\(212\) 47.3478 3.25186
\(213\) 0 0
\(214\) −56.9221 −3.89112
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −40.1323 −2.71810
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 42.8732 2.85188
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −30.1021 −1.97630
\(233\) 25.5308 1.67258 0.836289 0.548289i \(-0.184721\pi\)
0.836289 + 0.548289i \(0.184721\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 25.8950 1.67501 0.837504 0.546432i \(-0.184014\pi\)
0.837504 + 0.546432i \(0.184014\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −23.2567 −1.49500
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 8.07069 0.507400
\(254\) 62.7271 3.93585
\(255\) 0 0
\(256\) 110.548 6.90927
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.8146 −0.975171 −0.487585 0.873075i \(-0.662122\pi\)
−0.487585 + 0.873075i \(0.662122\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −61.3846 −3.74966
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −50.9764 −3.07960
\(275\) −8.21552 −0.495415
\(276\) 0 0
\(277\) 18.5875 1.11681 0.558407 0.829567i \(-0.311413\pi\)
0.558407 + 0.829567i \(0.311413\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 32.7590 1.95424 0.977119 0.212695i \(-0.0682240\pi\)
0.977119 + 0.212695i \(0.0682240\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 51.0146 3.02716
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −129.641 −7.53522
\(297\) 0 0
\(298\) −15.2500 −0.883407
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −53.5193 −3.07969
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 80.1353 4.50796
\(317\) 29.4728 1.65536 0.827678 0.561203i \(-0.189661\pi\)
0.827678 + 0.561203i \(0.189661\pi\)
\(318\) 0 0
\(319\) −4.58402 −0.256656
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 55.8340 3.09236
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −30.1390 −1.65659 −0.828294 0.560294i \(-0.810688\pi\)
−0.828294 + 0.560294i \(0.810688\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.15644 0.117469 0.0587344 0.998274i \(-0.481293\pi\)
0.0587344 + 0.998274i \(0.481293\pi\)
\(338\) −36.4252 −1.98127
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −26.8514 −1.44773
\(345\) 0 0
\(346\) 0 0
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 49.8558 2.65732
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −69.7797 −3.68797
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 91.0206 4.74477
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −33.5967 −1.73957 −0.869786 0.493430i \(-0.835743\pi\)
−0.869786 + 0.493430i \(0.835743\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −71.9348 −3.68050
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −19.7084 −1.00313
\(387\) 0 0
\(388\) 0 0
\(389\) 1.86187 0.0944006 0.0472003 0.998885i \(-0.484970\pi\)
0.0472003 + 0.998885i \(0.484970\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −78.5018 −3.95487
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −92.6540 −4.63270
\(401\) 13.0696 0.652666 0.326333 0.945255i \(-0.394187\pi\)
0.326333 + 0.945255i \(0.394187\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −19.7420 −0.978575
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 36.7385 1.79053 0.895264 0.445537i \(-0.146987\pi\)
0.895264 + 0.445537i \(0.146987\pi\)
\(422\) −1.87130 −0.0910933
\(423\) 0 0
\(424\) 87.3165 4.24046
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −118.862 −5.74540
\(429\) 0 0
\(430\) 0 0
\(431\) −18.6735 −0.899471 −0.449735 0.893162i \(-0.648482\pi\)
−0.449735 + 0.893162i \(0.648482\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −83.8021 −4.01339
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 41.7157 1.96869 0.984343 0.176263i \(-0.0564010\pi\)
0.984343 + 0.176263i \(0.0564010\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 89.5255 4.21093
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.7730 1.11205 0.556027 0.831164i \(-0.312325\pi\)
0.556027 + 0.831164i \(0.312325\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −12.5284 −0.582244 −0.291122 0.956686i \(-0.594029\pi\)
−0.291122 + 0.956686i \(0.594029\pi\)
\(464\) −51.6983 −2.40003
\(465\) 0 0
\(466\) 71.5357 3.31383
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.08900 −0.188012
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 72.5561 3.31864
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −48.5633 −2.20742
\(485\) 0 0
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.9498 0.674673 0.337336 0.941384i \(-0.390474\pi\)
0.337336 + 0.941384i \(0.390474\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 43.1309 1.93081 0.965403 0.260762i \(-0.0839736\pi\)
0.965403 + 0.260762i \(0.0839736\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 22.6136 1.00530
\(507\) 0 0
\(508\) 130.983 5.81144
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 162.380 7.17625
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −44.3116 −1.93208
\(527\) 0 0
\(528\) 0 0
\(529\) 1.12631 0.0489700
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −113.202 −4.88960
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 16.8576 0.724763 0.362382 0.932030i \(-0.381964\pi\)
0.362382 + 0.932030i \(0.381964\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 39.8447 1.70364 0.851819 0.523836i \(-0.175500\pi\)
0.851819 + 0.523836i \(0.175500\pi\)
\(548\) −106.446 −4.54716
\(549\) 0 0
\(550\) −23.0194 −0.981550
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 52.0810 2.21271
\(555\) 0 0
\(556\) 0 0
\(557\) 20.5536 0.870885 0.435443 0.900216i \(-0.356592\pi\)
0.435443 + 0.900216i \(0.356592\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 91.7886 3.87187
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 94.0786 3.94745
\(569\) 1.45414 0.0609607 0.0304804 0.999535i \(-0.490296\pi\)
0.0304804 + 0.999535i \(0.490296\pi\)
\(570\) 0 0
\(571\) −47.3196 −1.98026 −0.990132 0.140141i \(-0.955244\pi\)
−0.990132 + 0.140141i \(0.955244\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.5593 −1.02419
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −47.6329 −1.98127
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 13.2968 0.550695
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −222.649 −9.15081
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −31.8442 −1.30439
\(597\) 0 0
\(598\) 0 0
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −111.756 −4.54729
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.12977 0.0456309 0.0228154 0.999740i \(-0.492737\pi\)
0.0228154 + 0.999740i \(0.492737\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.4851 1.42858 0.714289 0.699851i \(-0.246750\pi\)
0.714289 + 0.699851i \(0.246750\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 6.24757 0.248712 0.124356 0.992238i \(-0.460314\pi\)
0.124356 + 0.992238i \(0.460314\pi\)
\(632\) 147.781 5.87843
\(633\) 0 0
\(634\) 82.5809 3.27971
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −12.8442 −0.508505
\(639\) 0 0
\(640\) 0 0
\(641\) 32.2610 1.27423 0.637116 0.770768i \(-0.280127\pi\)
0.637116 + 0.770768i \(0.280127\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 116.590 4.56600
\(653\) −22.9004 −0.896160 −0.448080 0.893993i \(-0.647892\pi\)
−0.448080 + 0.893993i \(0.647892\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 51.1221 1.99143 0.995717 0.0924489i \(-0.0294695\pi\)
0.995717 + 0.0924489i \(0.0294695\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −84.4476 −3.28215
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −13.7034 −0.530596
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −47.9463 −1.84819 −0.924097 0.382158i \(-0.875181\pi\)
−0.924097 + 0.382158i \(0.875181\pi\)
\(674\) 6.04221 0.232737
\(675\) 0 0
\(676\) −76.0611 −2.92543
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.5585 1.39887 0.699437 0.714695i \(-0.253434\pi\)
0.699437 + 0.714695i \(0.253434\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −46.1154 −1.75813
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −11.2078 −0.425440
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −42.6176 −1.60965 −0.804823 0.593516i \(-0.797740\pi\)
−0.804823 + 0.593516i \(0.797740\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 78.7967 2.96976
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 52.9235 1.98758 0.993791 0.111262i \(-0.0354891\pi\)
0.993791 + 0.111262i \(0.0354891\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −145.710 −5.44545
\(717\) 0 0
\(718\) −22.4155 −0.836539
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −53.2368 −1.98127
\(723\) 0 0
\(724\) 0 0
\(725\) 13.9493 0.518063
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 149.038 5.49360
\(737\) −17.2387 −0.634997
\(738\) 0 0
\(739\) 39.9627 1.47005 0.735026 0.678039i \(-0.237170\pi\)
0.735026 + 0.678039i \(0.237170\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −94.1359 −3.44656
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.24219 −0.337252 −0.168626 0.985680i \(-0.553933\pi\)
−0.168626 + 0.985680i \(0.553933\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 53.2441 1.93519 0.967595 0.252507i \(-0.0812550\pi\)
0.967595 + 0.252507i \(0.0812550\pi\)
\(758\) −33.6233 −1.22125
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −150.210 −5.43442
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −41.1540 −1.48117
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 5.21685 0.187033
\(779\) 0 0
\(780\) 0 0
\(781\) 14.3265 0.512643
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −163.923 −5.83953
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −151.712 −5.36383
\(801\) 0 0
\(802\) 36.6203 1.29311
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 56.7891 1.99660 0.998300 0.0582924i \(-0.0185656\pi\)
0.998300 + 0.0582924i \(0.0185656\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −55.3159 −1.93882
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −46.6929 −1.62959 −0.814796 0.579747i \(-0.803151\pi\)
−0.814796 + 0.579747i \(0.803151\pi\)
\(822\) 0 0
\(823\) −53.5502 −1.86664 −0.933321 0.359043i \(-0.883103\pi\)
−0.933321 + 0.359043i \(0.883103\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −21.2167 −0.731610
\(842\) 102.939 3.54752
\(843\) 0 0
\(844\) −3.90754 −0.134503
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 149.960 5.14964
\(849\) 0 0
\(850\) 0 0
\(851\) −59.0162 −2.02305
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −219.199 −7.49206
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −52.3220 −1.78209
\(863\) 58.5273 1.99229 0.996147 0.0877008i \(-0.0279519\pi\)
0.996147 + 0.0877008i \(0.0279519\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.5045 0.763413
\(870\) 0 0
\(871\) 0 0
\(872\) −154.544 −5.23351
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −58.8238 −1.98634 −0.993170 0.116679i \(-0.962775\pi\)
−0.993170 + 0.116679i \(0.962775\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −52.9896 −1.78324 −0.891621 0.452783i \(-0.850431\pi\)
−0.891621 + 0.452783i \(0.850431\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 56.0388 1.88266
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 116.885 3.90050
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 165.099 5.49110
\(905\) 0 0
\(906\) 0 0
\(907\) 33.2723 1.10479 0.552395 0.833583i \(-0.313714\pi\)
0.552395 + 0.833583i \(0.313714\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 35.5319 1.17722 0.588612 0.808416i \(-0.299675\pi\)
0.588612 + 0.808416i \(0.299675\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 66.6104 2.20328
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 60.0753 1.97526
\(926\) −35.1038 −1.15358
\(927\) 0 0
\(928\) −84.6510 −2.77880
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 149.377 4.89301
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −11.4571 −0.372503
\(947\) 52.2968 1.69942 0.849708 0.527254i \(-0.176778\pi\)
0.849708 + 0.527254i \(0.176778\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19.6142 −0.635365 −0.317682 0.948197i \(-0.602905\pi\)
−0.317682 + 0.948197i \(0.602905\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 151.508 4.90011
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 56.7018 1.82341 0.911704 0.410848i \(-0.134767\pi\)
0.911704 + 0.410848i \(0.134767\pi\)
\(968\) −89.5581 −2.87851
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −67.2465 −2.15472
\(975\) 0 0
\(976\) 0 0
\(977\) 4.41598 0.141280 0.0706398 0.997502i \(-0.477496\pi\)
0.0706398 + 0.997502i \(0.477496\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 41.8883 1.33671
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.2236 −0.388686
\(990\) 0 0
\(991\) 46.8781 1.48913 0.744566 0.667549i \(-0.232656\pi\)
0.744566 + 0.667549i \(0.232656\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 120.850 3.82545
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3087.2.a.f.1.3 3
3.2 odd 2 343.2.a.a.1.1 3
7.6 odd 2 CM 3087.2.a.f.1.3 3
12.11 even 2 5488.2.a.d.1.2 3
15.14 odd 2 8575.2.a.f.1.3 3
21.2 odd 6 343.2.c.b.18.3 6
21.5 even 6 343.2.c.b.18.3 6
21.11 odd 6 343.2.c.b.324.3 6
21.17 even 6 343.2.c.b.324.3 6
21.20 even 2 343.2.a.a.1.1 3
84.83 odd 2 5488.2.a.d.1.2 3
105.104 even 2 8575.2.a.f.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
343.2.a.a.1.1 3 3.2 odd 2
343.2.a.a.1.1 3 21.20 even 2
343.2.c.b.18.3 6 21.2 odd 6
343.2.c.b.18.3 6 21.5 even 6
343.2.c.b.324.3 6 21.11 odd 6
343.2.c.b.324.3 6 21.17 even 6
3087.2.a.f.1.3 3 1.1 even 1 trivial
3087.2.a.f.1.3 3 7.6 odd 2 CM
5488.2.a.d.1.2 3 12.11 even 2
5488.2.a.d.1.2 3 84.83 odd 2
8575.2.a.f.1.3 3 15.14 odd 2
8575.2.a.f.1.3 3 105.104 even 2