Properties

Label 3060.1.ds
Level $3060$
Weight $1$
Character orbit 3060.ds
Rep. character $\chi_{3060}(343,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $24$
Newform subspaces $3$
Sturm bound $648$
Trace bound $26$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3060.ds (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 340 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 3 \)
Sturm bound: \(648\)
Trace bound: \(26\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3060, [\chi])\).

Total New Old
Modular forms 176 56 120
Cusp forms 48 24 24
Eisenstein series 128 32 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 0 0 0

Trace form

\( 24 q + 16 q^{10} + 8 q^{20} + 8 q^{41} + 8 q^{53} - 8 q^{68} + 16 q^{73} + 8 q^{74} + 8 q^{82}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3060.1.ds.a 3060.ds 340.ac $8$ $1.527$ \(\Q(\zeta_{16})\) $D_{16}$ \(\Q(\sqrt{-1}) \) None 340.1.bc.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{16}^{5}q^{2}-\zeta_{16}^{2}q^{4}+\zeta_{16}^{6}q^{5}+\cdots\)
3060.1.ds.b 3060.ds 340.ac $8$ $1.527$ \(\Q(\zeta_{16})\) $D_{16}$ \(\Q(\sqrt{-1}) \) None 3060.1.ds.b \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{16}^{5}q^{2}-\zeta_{16}^{2}q^{4}-\zeta_{16}^{3}q^{5}+\cdots\)
3060.1.ds.c 3060.ds 340.ac $8$ $1.527$ \(\Q(\zeta_{16})\) $D_{16}$ \(\Q(\sqrt{-1}) \) None 3060.1.ds.b \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{16}^{5}q^{2}-\zeta_{16}^{2}q^{4}+\zeta_{16}^{3}q^{5}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)