Properties

Label 3025.1.r
Level $3025$
Weight $1$
Character orbit 3025.r
Rep. character $\chi_{3025}(844,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $4$
Newform subspaces $1$
Sturm bound $330$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3025.r (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(330\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3025, [\chi])\).

Total New Old
Modular forms 52 36 16
Cusp forms 4 4 0
Eisenstein series 48 32 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + q^{4} + q^{5} - q^{9} - 5 q^{12} + 5 q^{15} - q^{16} - q^{20} - q^{25} - 5 q^{27} + 2 q^{31} - 4 q^{36} + q^{45} + q^{49} - 5 q^{53} - 2 q^{59} + q^{64} - 5 q^{67} + 5 q^{69} - 2 q^{71} + 5 q^{75}+ \cdots + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3025, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3025.1.r.a 3025.r 275.r $4$ $1.510$ \(\Q(\zeta_{10})\) $D_{10}$ \(\Q(\sqrt{-11}) \) None 275.1.s.a \(0\) \(0\) \(1\) \(0\) \(q+(-\zeta_{10}^{2}+\zeta_{10}^{4})q^{3}+\zeta_{10}q^{4}+\zeta_{10}^{3}q^{5}+\cdots\)