Properties

Label 3024.2.q.k.2305.11
Level $3024$
Weight $2$
Character 3024.2305
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2305.11
Character \(\chi\) \(=\) 3024.2305
Dual form 3024.2.q.k.2881.11

$q$-expansion

\(f(q)\) \(=\) \(q+(1.92048 + 3.32636i) q^{5} +(2.55336 + 0.693065i) q^{7} +O(q^{10})\) \(q+(1.92048 + 3.32636i) q^{5} +(2.55336 + 0.693065i) q^{7} +(-0.903316 + 1.56459i) q^{11} +(-0.692713 + 1.19981i) q^{13} +(0.833405 + 1.44350i) q^{17} +(0.0802084 - 0.138925i) q^{19} +(-1.60019 - 2.77161i) q^{23} +(-4.87646 + 8.44627i) q^{25} +(3.78000 + 6.54716i) q^{29} -3.22021 q^{31} +(2.59829 + 9.82442i) q^{35} +(1.58395 - 2.74348i) q^{37} +(-6.00329 + 10.3980i) q^{41} +(-3.45480 - 5.98389i) q^{43} +11.4384 q^{47} +(6.03932 + 3.53929i) q^{49} +(-1.37450 - 2.38071i) q^{53} -6.93918 q^{55} +15.0705 q^{59} -9.20285 q^{61} -5.32136 q^{65} +12.3366 q^{67} -6.93289 q^{71} +(-6.22457 - 10.7813i) q^{73} +(-3.39085 + 3.36891i) q^{77} -16.0743 q^{79} +(-1.45280 - 2.51633i) q^{83} +(-3.20107 + 5.54441i) q^{85} +(-5.04034 + 8.73012i) q^{89} +(-2.60030 + 2.58347i) q^{91} +0.616153 q^{95} +(4.18830 + 7.25435i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22q - 3q^{5} + 5q^{7} + O(q^{10}) \) \( 22q - 3q^{5} + 5q^{7} - 3q^{11} - 3q^{13} - 7q^{17} + q^{19} + 2q^{23} - 10q^{25} - 9q^{29} - 8q^{31} + 14q^{35} + 2q^{37} - 16q^{41} - 10q^{47} + 15q^{49} - 11q^{53} - 22q^{55} + 38q^{59} + 26q^{61} + 26q^{65} + 52q^{67} - 48q^{71} - 35q^{73} - 17q^{77} + 20q^{79} - 28q^{83} - 20q^{85} - 6q^{89} + 37q^{91} - 24q^{95} - 29q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.92048 + 3.32636i 0.858863 + 1.48759i 0.873014 + 0.487694i \(0.162162\pi\)
−0.0141515 + 0.999900i \(0.504505\pi\)
\(6\) 0 0
\(7\) 2.55336 + 0.693065i 0.965080 + 0.261954i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.903316 + 1.56459i −0.272360 + 0.471741i −0.969466 0.245227i \(-0.921137\pi\)
0.697106 + 0.716968i \(0.254471\pi\)
\(12\) 0 0
\(13\) −0.692713 + 1.19981i −0.192124 + 0.332769i −0.945954 0.324301i \(-0.894871\pi\)
0.753830 + 0.657070i \(0.228204\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.833405 + 1.44350i 0.202130 + 0.350100i 0.949215 0.314629i \(-0.101880\pi\)
−0.747084 + 0.664729i \(0.768547\pi\)
\(18\) 0 0
\(19\) 0.0802084 0.138925i 0.0184011 0.0318716i −0.856678 0.515851i \(-0.827476\pi\)
0.875079 + 0.483980i \(0.160809\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.60019 2.77161i −0.333663 0.577921i 0.649564 0.760307i \(-0.274951\pi\)
−0.983227 + 0.182386i \(0.941618\pi\)
\(24\) 0 0
\(25\) −4.87646 + 8.44627i −0.975291 + 1.68925i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.78000 + 6.54716i 0.701929 + 1.21578i 0.967788 + 0.251765i \(0.0810110\pi\)
−0.265859 + 0.964012i \(0.585656\pi\)
\(30\) 0 0
\(31\) −3.22021 −0.578367 −0.289184 0.957274i \(-0.593384\pi\)
−0.289184 + 0.957274i \(0.593384\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.59829 + 9.82442i 0.439190 + 1.66063i
\(36\) 0 0
\(37\) 1.58395 2.74348i 0.260399 0.451025i −0.705949 0.708263i \(-0.749479\pi\)
0.966348 + 0.257238i \(0.0828124\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00329 + 10.3980i −0.937556 + 1.62389i −0.167545 + 0.985864i \(0.553584\pi\)
−0.770011 + 0.638030i \(0.779750\pi\)
\(42\) 0 0
\(43\) −3.45480 5.98389i −0.526852 0.912535i −0.999510 0.0312891i \(-0.990039\pi\)
0.472658 0.881246i \(-0.343295\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.4384 1.66846 0.834232 0.551414i \(-0.185911\pi\)
0.834232 + 0.551414i \(0.185911\pi\)
\(48\) 0 0
\(49\) 6.03932 + 3.53929i 0.862760 + 0.505613i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.37450 2.38071i −0.188802 0.327015i 0.756049 0.654515i \(-0.227127\pi\)
−0.944851 + 0.327500i \(0.893794\pi\)
\(54\) 0 0
\(55\) −6.93918 −0.935679
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 15.0705 1.96202 0.981009 0.193964i \(-0.0621344\pi\)
0.981009 + 0.193964i \(0.0621344\pi\)
\(60\) 0 0
\(61\) −9.20285 −1.17830 −0.589152 0.808022i \(-0.700538\pi\)
−0.589152 + 0.808022i \(0.700538\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.32136 −0.660033
\(66\) 0 0
\(67\) 12.3366 1.50716 0.753578 0.657359i \(-0.228326\pi\)
0.753578 + 0.657359i \(0.228326\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.93289 −0.822783 −0.411391 0.911459i \(-0.634957\pi\)
−0.411391 + 0.911459i \(0.634957\pi\)
\(72\) 0 0
\(73\) −6.22457 10.7813i −0.728531 1.26185i −0.957504 0.288420i \(-0.906870\pi\)
0.228973 0.973433i \(-0.426463\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.39085 + 3.36891i −0.386424 + 0.383922i
\(78\) 0 0
\(79\) −16.0743 −1.80850 −0.904251 0.427001i \(-0.859570\pi\)
−0.904251 + 0.427001i \(0.859570\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.45280 2.51633i −0.159466 0.276203i 0.775210 0.631703i \(-0.217644\pi\)
−0.934676 + 0.355500i \(0.884311\pi\)
\(84\) 0 0
\(85\) −3.20107 + 5.54441i −0.347205 + 0.601376i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.04034 + 8.73012i −0.534275 + 0.925391i 0.464923 + 0.885351i \(0.346082\pi\)
−0.999198 + 0.0400399i \(0.987251\pi\)
\(90\) 0 0
\(91\) −2.60030 + 2.58347i −0.272585 + 0.270821i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.616153 0.0632160
\(96\) 0 0
\(97\) 4.18830 + 7.25435i 0.425257 + 0.736567i 0.996444 0.0842527i \(-0.0268503\pi\)
−0.571187 + 0.820820i \(0.693517\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.05750 7.02780i 0.403736 0.699292i −0.590437 0.807084i \(-0.701045\pi\)
0.994173 + 0.107792i \(0.0343780\pi\)
\(102\) 0 0
\(103\) −3.76891 6.52794i −0.371362 0.643217i 0.618414 0.785853i \(-0.287776\pi\)
−0.989775 + 0.142635i \(0.954442\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.95731 + 5.12221i −0.285894 + 0.495183i −0.972826 0.231539i \(-0.925624\pi\)
0.686932 + 0.726722i \(0.258957\pi\)
\(108\) 0 0
\(109\) −4.48409 7.76668i −0.429498 0.743913i 0.567331 0.823490i \(-0.307976\pi\)
−0.996829 + 0.0795776i \(0.974643\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.98131 13.8240i 0.750819 1.30046i −0.196608 0.980482i \(-0.562993\pi\)
0.947426 0.319974i \(-0.103674\pi\)
\(114\) 0 0
\(115\) 6.14626 10.6456i 0.573142 0.992710i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.12755 + 4.26338i 0.103362 + 0.390824i
\(120\) 0 0
\(121\) 3.86804 + 6.69964i 0.351640 + 0.609059i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −18.2557 −1.63284
\(126\) 0 0
\(127\) −8.60913 −0.763937 −0.381968 0.924175i \(-0.624754\pi\)
−0.381968 + 0.924175i \(0.624754\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.964831 + 1.67114i 0.0842976 + 0.146008i 0.905092 0.425216i \(-0.139802\pi\)
−0.820794 + 0.571224i \(0.806469\pi\)
\(132\) 0 0
\(133\) 0.301085 0.299136i 0.0261074 0.0259384i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.85442 + 3.21195i −0.158434 + 0.274416i −0.934304 0.356477i \(-0.883978\pi\)
0.775870 + 0.630893i \(0.217311\pi\)
\(138\) 0 0
\(139\) −0.134568 + 0.233079i −0.0114139 + 0.0197695i −0.871676 0.490083i \(-0.836967\pi\)
0.860262 + 0.509852i \(0.170300\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.25148 2.16762i −0.104654 0.181266i
\(144\) 0 0
\(145\) −14.5188 + 25.1473i −1.20572 + 2.08837i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.15880 + 7.20325i 0.340702 + 0.590113i 0.984563 0.175029i \(-0.0560019\pi\)
−0.643861 + 0.765142i \(0.722669\pi\)
\(150\) 0 0
\(151\) 4.87069 8.43628i 0.396371 0.686535i −0.596904 0.802313i \(-0.703603\pi\)
0.993275 + 0.115778i \(0.0369360\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.18434 10.7116i −0.496738 0.860376i
\(156\) 0 0
\(157\) 24.2580 1.93600 0.968001 0.250947i \(-0.0807420\pi\)
0.968001 + 0.250947i \(0.0807420\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.16496 8.18597i −0.170623 0.645145i
\(162\) 0 0
\(163\) −3.91401 + 6.77927i −0.306569 + 0.530993i −0.977609 0.210428i \(-0.932514\pi\)
0.671040 + 0.741421i \(0.265848\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.15395 + 3.73076i −0.166678 + 0.288695i −0.937250 0.348658i \(-0.886637\pi\)
0.770572 + 0.637353i \(0.219971\pi\)
\(168\) 0 0
\(169\) 5.54030 + 9.59608i 0.426177 + 0.738160i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.3359 1.31803 0.659014 0.752131i \(-0.270974\pi\)
0.659014 + 0.752131i \(0.270974\pi\)
\(174\) 0 0
\(175\) −18.3052 + 18.1867i −1.38374 + 1.37478i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.68644 16.7774i −0.723998 1.25400i −0.959385 0.282100i \(-0.908969\pi\)
0.235387 0.971902i \(-0.424364\pi\)
\(180\) 0 0
\(181\) 2.89036 0.214839 0.107420 0.994214i \(-0.465741\pi\)
0.107420 + 0.994214i \(0.465741\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.1677 0.894590
\(186\) 0 0
\(187\) −3.01131 −0.220209
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.70044 0.267755 0.133877 0.990998i \(-0.457257\pi\)
0.133877 + 0.990998i \(0.457257\pi\)
\(192\) 0 0
\(193\) −12.7670 −0.918991 −0.459495 0.888180i \(-0.651970\pi\)
−0.459495 + 0.888180i \(0.651970\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.44715 −0.174352 −0.0871762 0.996193i \(-0.527784\pi\)
−0.0871762 + 0.996193i \(0.527784\pi\)
\(198\) 0 0
\(199\) −2.24829 3.89415i −0.159377 0.276049i 0.775267 0.631633i \(-0.217615\pi\)
−0.934644 + 0.355584i \(0.884282\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.11411 + 19.3371i 0.358940 + 1.35720i
\(204\) 0 0
\(205\) −46.1167 −3.22093
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.144907 + 0.250986i 0.0100234 + 0.0173611i
\(210\) 0 0
\(211\) −1.09087 + 1.88945i −0.0750987 + 0.130075i −0.901129 0.433551i \(-0.857261\pi\)
0.826030 + 0.563625i \(0.190594\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 13.2697 22.9838i 0.904988 1.56749i
\(216\) 0 0
\(217\) −8.22237 2.23182i −0.558171 0.151506i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.30924 −0.155336
\(222\) 0 0
\(223\) 2.87967 + 4.98773i 0.192837 + 0.334003i 0.946189 0.323614i \(-0.104898\pi\)
−0.753352 + 0.657617i \(0.771564\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.29135 + 14.3610i −0.550316 + 0.953175i 0.447935 + 0.894066i \(0.352159\pi\)
−0.998252 + 0.0591094i \(0.981174\pi\)
\(228\) 0 0
\(229\) 7.29688 + 12.6386i 0.482191 + 0.835180i 0.999791 0.0204432i \(-0.00650771\pi\)
−0.517600 + 0.855623i \(0.673174\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.949438 + 1.64448i −0.0621998 + 0.107733i −0.895448 0.445165i \(-0.853145\pi\)
0.833249 + 0.552898i \(0.186478\pi\)
\(234\) 0 0
\(235\) 21.9672 + 38.0483i 1.43298 + 2.48200i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.46351 + 7.73103i −0.288721 + 0.500079i −0.973505 0.228667i \(-0.926563\pi\)
0.684784 + 0.728746i \(0.259897\pi\)
\(240\) 0 0
\(241\) 12.1465 21.0383i 0.782423 1.35520i −0.148104 0.988972i \(-0.547317\pi\)
0.930527 0.366224i \(-0.119350\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.174600 + 26.8861i −0.0111548 + 1.71769i
\(246\) 0 0
\(247\) 0.111123 + 0.192470i 0.00707057 + 0.0122466i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.64873 −0.356545 −0.178272 0.983981i \(-0.557051\pi\)
−0.178272 + 0.983981i \(0.557051\pi\)
\(252\) 0 0
\(253\) 5.78191 0.363506
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.7856 20.4132i −0.735163 1.27334i −0.954652 0.297724i \(-0.903772\pi\)
0.219489 0.975615i \(-0.429561\pi\)
\(258\) 0 0
\(259\) 5.94580 5.90731i 0.369454 0.367063i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.8203 + 22.2053i −0.790531 + 1.36924i 0.135108 + 0.990831i \(0.456862\pi\)
−0.925639 + 0.378409i \(0.876471\pi\)
\(264\) 0 0
\(265\) 5.27940 9.14419i 0.324311 0.561723i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.27239 + 14.3282i 0.504376 + 0.873606i 0.999987 + 0.00506090i \(0.00161094\pi\)
−0.495611 + 0.868545i \(0.665056\pi\)
\(270\) 0 0
\(271\) −8.90748 + 15.4282i −0.541091 + 0.937197i 0.457751 + 0.889081i \(0.348655\pi\)
−0.998842 + 0.0481166i \(0.984678\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.80996 15.2593i −0.531260 0.920170i
\(276\) 0 0
\(277\) 2.92191 5.06089i 0.175560 0.304080i −0.764795 0.644274i \(-0.777160\pi\)
0.940355 + 0.340194i \(0.110493\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.5591 + 18.2889i 0.629905 + 1.09103i 0.987570 + 0.157177i \(0.0502394\pi\)
−0.357666 + 0.933850i \(0.616427\pi\)
\(282\) 0 0
\(283\) 12.7762 0.759468 0.379734 0.925096i \(-0.376016\pi\)
0.379734 + 0.925096i \(0.376016\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −22.5351 + 22.3892i −1.33020 + 1.32159i
\(288\) 0 0
\(289\) 7.11087 12.3164i 0.418287 0.724494i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.93828 + 10.2854i −0.346918 + 0.600880i −0.985700 0.168508i \(-0.946105\pi\)
0.638782 + 0.769388i \(0.279439\pi\)
\(294\) 0 0
\(295\) 28.9426 + 50.1301i 1.68510 + 2.91869i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.43389 0.256419
\(300\) 0 0
\(301\) −4.67413 17.6734i −0.269413 1.01868i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.6739 30.6120i −1.01200 1.75284i
\(306\) 0 0
\(307\) 3.93298 0.224467 0.112234 0.993682i \(-0.464200\pi\)
0.112234 + 0.993682i \(0.464200\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.98221 0.112401 0.0562005 0.998420i \(-0.482101\pi\)
0.0562005 + 0.998420i \(0.482101\pi\)
\(312\) 0 0
\(313\) 20.4995 1.15870 0.579349 0.815080i \(-0.303307\pi\)
0.579349 + 0.815080i \(0.303307\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.51416 −0.534369 −0.267184 0.963645i \(-0.586093\pi\)
−0.267184 + 0.963645i \(0.586093\pi\)
\(318\) 0 0
\(319\) −13.6581 −0.764709
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.267384 0.0148777
\(324\) 0 0
\(325\) −6.75597 11.7017i −0.374754 0.649093i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 29.2064 + 7.92756i 1.61020 + 0.437061i
\(330\) 0 0
\(331\) −1.52986 −0.0840886 −0.0420443 0.999116i \(-0.513387\pi\)
−0.0420443 + 0.999116i \(0.513387\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 23.6921 + 41.0360i 1.29444 + 2.24204i
\(336\) 0 0
\(337\) 10.6972 18.5281i 0.582714 1.00929i −0.412442 0.910984i \(-0.635324\pi\)
0.995156 0.0983063i \(-0.0313425\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.90887 5.03831i 0.157524 0.272840i
\(342\) 0 0
\(343\) 12.9676 + 13.2227i 0.700185 + 0.713961i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.14381 0.276134 0.138067 0.990423i \(-0.455911\pi\)
0.138067 + 0.990423i \(0.455911\pi\)
\(348\) 0 0
\(349\) 0.207526 + 0.359446i 0.0111086 + 0.0192407i 0.871526 0.490349i \(-0.163131\pi\)
−0.860418 + 0.509590i \(0.829797\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.04122 + 10.4637i −0.321542 + 0.556926i −0.980806 0.194985i \(-0.937534\pi\)
0.659265 + 0.751911i \(0.270868\pi\)
\(354\) 0 0
\(355\) −13.3145 23.0613i −0.706658 1.22397i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.14926 + 14.1149i −0.430102 + 0.744958i −0.996882 0.0789113i \(-0.974856\pi\)
0.566780 + 0.823869i \(0.308189\pi\)
\(360\) 0 0
\(361\) 9.48713 + 16.4322i 0.499323 + 0.864852i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 23.9083 41.4104i 1.25142 2.16752i
\(366\) 0 0
\(367\) 17.3500 30.0511i 0.905664 1.56866i 0.0856404 0.996326i \(-0.472706\pi\)
0.820024 0.572330i \(-0.193960\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.85962 7.03143i −0.0965465 0.365054i
\(372\) 0 0
\(373\) 7.75329 + 13.4291i 0.401450 + 0.695332i 0.993901 0.110274i \(-0.0351730\pi\)
−0.592451 + 0.805606i \(0.701840\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.4738 −0.539430
\(378\) 0 0
\(379\) 16.1820 0.831214 0.415607 0.909544i \(-0.363569\pi\)
0.415607 + 0.909544i \(0.363569\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.17027 3.75902i −0.110896 0.192077i 0.805236 0.592955i \(-0.202039\pi\)
−0.916132 + 0.400877i \(0.868705\pi\)
\(384\) 0 0
\(385\) −17.7183 4.80931i −0.903006 0.245105i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.7731 22.1237i 0.647624 1.12172i −0.336065 0.941839i \(-0.609096\pi\)
0.983689 0.179879i \(-0.0575705\pi\)
\(390\) 0 0
\(391\) 2.66722 4.61975i 0.134887 0.233631i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −30.8703 53.4690i −1.55326 2.69032i
\(396\) 0 0
\(397\) 2.28225 3.95297i 0.114543 0.198394i −0.803054 0.595906i \(-0.796793\pi\)
0.917597 + 0.397512i \(0.130126\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.668128 + 1.15723i 0.0333647 + 0.0577894i 0.882226 0.470827i \(-0.156044\pi\)
−0.848861 + 0.528616i \(0.822711\pi\)
\(402\) 0 0
\(403\) 2.23068 3.86366i 0.111118 0.192463i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.86161 + 4.95645i 0.141845 + 0.245682i
\(408\) 0 0
\(409\) 20.6664 1.02189 0.510944 0.859614i \(-0.329296\pi\)
0.510944 + 0.859614i \(0.329296\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 38.4806 + 10.4449i 1.89350 + 0.513958i
\(414\) 0 0
\(415\) 5.58015 9.66510i 0.273919 0.474441i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.5227 18.2259i 0.514069 0.890394i −0.485797 0.874071i \(-0.661471\pi\)
0.999867 0.0163228i \(-0.00519594\pi\)
\(420\) 0 0
\(421\) −8.51630 14.7507i −0.415059 0.718903i 0.580376 0.814349i \(-0.302906\pi\)
−0.995435 + 0.0954456i \(0.969572\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −16.2563 −0.788544
\(426\) 0 0
\(427\) −23.4982 6.37818i −1.13716 0.308662i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.2925 + 31.6836i 0.881121 + 1.52615i 0.850096 + 0.526627i \(0.176544\pi\)
0.0310244 + 0.999519i \(0.490123\pi\)
\(432\) 0 0
\(433\) −23.6571 −1.13689 −0.568444 0.822722i \(-0.692454\pi\)
−0.568444 + 0.822722i \(0.692454\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.513395 −0.0245590
\(438\) 0 0
\(439\) −20.7864 −0.992082 −0.496041 0.868299i \(-0.665213\pi\)
−0.496041 + 0.868299i \(0.665213\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.42807 0.352918 0.176459 0.984308i \(-0.443536\pi\)
0.176459 + 0.984308i \(0.443536\pi\)
\(444\) 0 0
\(445\) −38.7194 −1.83547
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.15800 0.385000 0.192500 0.981297i \(-0.438340\pi\)
0.192500 + 0.981297i \(0.438340\pi\)
\(450\) 0 0
\(451\) −10.8457 18.7854i −0.510705 0.884568i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −13.5873 3.68805i −0.636985 0.172898i
\(456\) 0 0
\(457\) 14.3058 0.669199 0.334600 0.942360i \(-0.391399\pi\)
0.334600 + 0.942360i \(0.391399\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.71961 13.3708i −0.359538 0.622738i 0.628346 0.777934i \(-0.283732\pi\)
−0.987884 + 0.155196i \(0.950399\pi\)
\(462\) 0 0
\(463\) −10.5531 + 18.2785i −0.490444 + 0.849474i −0.999940 0.0109995i \(-0.996499\pi\)
0.509496 + 0.860473i \(0.329832\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.49896 6.06037i 0.161912 0.280440i −0.773642 0.633623i \(-0.781567\pi\)
0.935555 + 0.353182i \(0.114900\pi\)
\(468\) 0 0
\(469\) 31.4998 + 8.55007i 1.45453 + 0.394805i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.4831 0.573974
\(474\) 0 0
\(475\) 0.782265 + 1.35492i 0.0358928 + 0.0621681i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.54406 + 2.67440i −0.0705500 + 0.122196i −0.899142 0.437656i \(-0.855809\pi\)
0.828592 + 0.559852i \(0.189142\pi\)
\(480\) 0 0
\(481\) 2.19444 + 3.80089i 0.100058 + 0.173305i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.0871 + 27.8636i −0.730475 + 1.26522i
\(486\) 0 0
\(487\) −4.90011 8.48725i −0.222045 0.384594i 0.733384 0.679815i \(-0.237940\pi\)
−0.955429 + 0.295221i \(0.904607\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.98641 17.2970i 0.450680 0.780601i −0.547748 0.836643i \(-0.684515\pi\)
0.998428 + 0.0560419i \(0.0178481\pi\)
\(492\) 0 0
\(493\) −6.30055 + 10.9129i −0.283762 + 0.491491i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.7022 4.80495i −0.794052 0.215531i
\(498\) 0 0
\(499\) −10.1650 17.6062i −0.455046 0.788163i 0.543645 0.839315i \(-0.317044\pi\)
−0.998691 + 0.0511526i \(0.983710\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −23.9595 −1.06830 −0.534151 0.845389i \(-0.679369\pi\)
−0.534151 + 0.845389i \(0.679369\pi\)
\(504\) 0 0
\(505\) 31.1693 1.38702
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.03046 + 8.71302i 0.222971 + 0.386198i 0.955709 0.294314i \(-0.0950910\pi\)
−0.732737 + 0.680511i \(0.761758\pi\)
\(510\) 0 0
\(511\) −8.42146 31.8425i −0.372544 1.40863i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.4762 25.0735i 0.637898 1.10487i
\(516\) 0 0
\(517\) −10.3325 + 17.8964i −0.454423 + 0.787083i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.99821 13.8533i −0.350408 0.606924i 0.635913 0.771761i \(-0.280624\pi\)
−0.986321 + 0.164836i \(0.947290\pi\)
\(522\) 0 0
\(523\) 18.7103 32.4072i 0.818146 1.41707i −0.0889016 0.996040i \(-0.528336\pi\)
0.907047 0.421029i \(-0.138331\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.68374 4.64838i −0.116906 0.202487i
\(528\) 0 0
\(529\) 6.37877 11.0484i 0.277338 0.480364i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.31711 14.4057i −0.360254 0.623978i
\(534\) 0 0
\(535\) −22.7178 −0.982175
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.9930 + 6.25195i −0.473500 + 0.269291i
\(540\) 0 0
\(541\) 0.229159 0.396916i 0.00985233 0.0170647i −0.861057 0.508508i \(-0.830197\pi\)
0.870910 + 0.491443i \(0.163531\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.2232 29.8314i 0.737760 1.27784i
\(546\) 0 0
\(547\) 11.2013 + 19.4011i 0.478931 + 0.829533i 0.999708 0.0241596i \(-0.00769098\pi\)
−0.520777 + 0.853693i \(0.674358\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.21275 0.0516650
\(552\) 0 0
\(553\) −41.0436 11.1405i −1.74535 0.473744i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.4155 18.0401i −0.441317 0.764383i 0.556471 0.830867i \(-0.312155\pi\)
−0.997787 + 0.0664841i \(0.978822\pi\)
\(558\) 0 0
\(559\) 9.57275 0.404884
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.80605 0.371131 0.185565 0.982632i \(-0.440588\pi\)
0.185565 + 0.982632i \(0.440588\pi\)
\(564\) 0 0
\(565\) 61.3117 2.57940
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.9857 −0.795923 −0.397962 0.917402i \(-0.630282\pi\)
−0.397962 + 0.917402i \(0.630282\pi\)
\(570\) 0 0
\(571\) 15.7597 0.659523 0.329762 0.944064i \(-0.393032\pi\)
0.329762 + 0.944064i \(0.393032\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 31.2131 1.30167
\(576\) 0 0
\(577\) −15.9306 27.5927i −0.663201 1.14870i −0.979770 0.200128i \(-0.935864\pi\)
0.316569 0.948570i \(-0.397469\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.96555 7.43199i −0.0815449 0.308331i
\(582\) 0 0
\(583\) 4.96644 0.205689
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.3597 35.2640i −0.840333 1.45550i −0.889613 0.456715i \(-0.849026\pi\)
0.0492799 0.998785i \(-0.484307\pi\)
\(588\) 0 0
\(589\) −0.258288 + 0.447368i −0.0106426 + 0.0184335i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.0693 24.3688i 0.577759 1.00071i −0.417977 0.908458i \(-0.637261\pi\)
0.995736 0.0922500i \(-0.0294059\pi\)
\(594\) 0 0
\(595\) −12.0161 + 11.9383i −0.492613 + 0.489425i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 32.9926 1.34804 0.674020 0.738713i \(-0.264566\pi\)
0.674020 + 0.738713i \(0.264566\pi\)
\(600\) 0 0
\(601\) −1.98103 3.43124i −0.0808079 0.139963i 0.822789 0.568347i \(-0.192417\pi\)
−0.903597 + 0.428383i \(0.859083\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.8570 + 25.7330i −0.604021 + 1.04620i
\(606\) 0 0
\(607\) 17.0132 + 29.4676i 0.690543 + 1.19605i 0.971660 + 0.236382i \(0.0759615\pi\)
−0.281118 + 0.959673i \(0.590705\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.92354 + 13.7240i −0.320552 + 0.555212i
\(612\) 0 0
\(613\) −15.2967 26.4946i −0.617827 1.07011i −0.989881 0.141897i \(-0.954680\pi\)
0.372054 0.928211i \(-0.378654\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.7646 + 32.5013i −0.755435 + 1.30845i 0.189723 + 0.981838i \(0.439241\pi\)
−0.945158 + 0.326614i \(0.894092\pi\)
\(618\) 0 0
\(619\) −2.92302 + 5.06282i −0.117486 + 0.203492i −0.918771 0.394791i \(-0.870817\pi\)
0.801285 + 0.598283i \(0.204150\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −18.9203 + 18.7979i −0.758028 + 0.753121i
\(624\) 0 0
\(625\) −10.6774 18.4937i −0.427095 0.739749i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.28028 0.210539
\(630\) 0 0
\(631\) −25.6347 −1.02050 −0.510251 0.860025i \(-0.670448\pi\)
−0.510251 + 0.860025i \(0.670448\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.5336 28.6371i −0.656117 1.13643i
\(636\) 0 0
\(637\) −8.43001 + 4.79435i −0.334009 + 0.189959i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.9824 22.4861i 0.512772 0.888147i −0.487118 0.873336i \(-0.661952\pi\)
0.999890 0.0148113i \(-0.00471476\pi\)
\(642\) 0 0
\(643\) 22.5634 39.0809i 0.889812 1.54120i 0.0497151 0.998763i \(-0.484169\pi\)
0.840097 0.542436i \(-0.182498\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.70324 + 4.68215i 0.106275 + 0.184074i 0.914259 0.405131i \(-0.132774\pi\)
−0.807983 + 0.589206i \(0.799441\pi\)
\(648\) 0 0
\(649\) −13.6135 + 23.5792i −0.534375 + 0.925564i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.9515 27.6288i −0.624231 1.08120i −0.988689 0.149980i \(-0.952079\pi\)
0.364458 0.931220i \(-0.381254\pi\)
\(654\) 0 0
\(655\) −3.70587 + 6.41875i −0.144800 + 0.250801i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.50215 + 4.33385i 0.0974699 + 0.168823i 0.910637 0.413208i \(-0.135592\pi\)
−0.813167 + 0.582031i \(0.802258\pi\)
\(660\) 0 0
\(661\) 9.63406 0.374721 0.187361 0.982291i \(-0.440007\pi\)
0.187361 + 0.982291i \(0.440007\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.57326 + 0.427034i 0.0610085 + 0.0165597i
\(666\) 0 0
\(667\) 12.0975 20.9534i 0.468415 0.811319i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.31308 14.3987i 0.320923 0.555855i
\(672\) 0 0
\(673\) 13.5885 + 23.5359i 0.523797 + 0.907243i 0.999616 + 0.0276998i \(0.00881825\pi\)
−0.475819 + 0.879543i \(0.657848\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.0502 1.46239 0.731194 0.682169i \(-0.238963\pi\)
0.731194 + 0.682169i \(0.238963\pi\)
\(678\) 0 0
\(679\) 5.66651 + 21.4257i 0.217461 + 0.822244i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.0571 + 26.0797i 0.576146 + 0.997913i 0.995916 + 0.0902831i \(0.0287772\pi\)
−0.419771 + 0.907630i \(0.637889\pi\)
\(684\) 0 0
\(685\) −14.2455 −0.544293
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.80854 0.145094
\(690\) 0 0
\(691\) −14.3902 −0.547429 −0.273714 0.961811i \(-0.588252\pi\)
−0.273714 + 0.961811i \(0.588252\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.03374 −0.0392120
\(696\) 0 0
\(697\) −20.0127 −0.758034
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −14.4170 −0.544521 −0.272261 0.962224i \(-0.587771\pi\)
−0.272261 + 0.962224i \(0.587771\pi\)
\(702\) 0 0
\(703\) −0.254092 0.440100i −0.00958325 0.0165987i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.2310 15.1324i 0.572820 0.569113i
\(708\) 0 0
\(709\) 11.4882 0.431448 0.215724 0.976454i \(-0.430789\pi\)
0.215724 + 0.976454i \(0.430789\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.15296 + 8.92519i 0.192980 + 0.334251i
\(714\) 0 0
\(715\) 4.80686 8.32573i 0.179766 0.311365i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.9451 31.0818i 0.669240 1.15916i −0.308877 0.951102i \(-0.599953\pi\)
0.978117 0.208055i \(-0.0667134\pi\)
\(720\) 0 0
\(721\) −5.09910 19.2803i −0.189901 0.718036i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −73.7321 −2.73834
\(726\) 0 0
\(727\) 5.03060 + 8.71326i 0.186575 + 0.323157i 0.944106 0.329642i \(-0.106928\pi\)
−0.757531 + 0.652799i \(0.773595\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.75850 9.97401i 0.212986 0.368902i
\(732\) 0 0
\(733\) −16.5690 28.6984i −0.611992 1.06000i −0.990904 0.134568i \(-0.957035\pi\)
0.378913 0.925432i \(-0.376298\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.1438 + 19.3017i −0.410489 + 0.710987i
\(738\) 0 0
\(739\) −21.9237 37.9729i −0.806475 1.39686i −0.915291 0.402793i \(-0.868039\pi\)
0.108816 0.994062i \(-0.465294\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.50115 7.79622i 0.165131 0.286016i −0.771571 0.636144i \(-0.780529\pi\)
0.936702 + 0.350128i \(0.113862\pi\)
\(744\) 0 0
\(745\) −15.9738 + 27.6673i −0.585233 + 1.01365i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.1011 + 11.0293i −0.405626 + 0.403000i
\(750\) 0 0
\(751\) 5.59141 + 9.68460i 0.204033 + 0.353396i 0.949824 0.312784i \(-0.101262\pi\)
−0.745791 + 0.666180i \(0.767928\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 37.4162 1.36171
\(756\) 0 0
\(757\) 42.1431 1.53172 0.765859 0.643009i \(-0.222314\pi\)
0.765859 + 0.643009i \(0.222314\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.14155 + 1.97721i 0.0413810 + 0.0716740i 0.885974 0.463735i \(-0.153491\pi\)
−0.844593 + 0.535409i \(0.820158\pi\)
\(762\) 0 0
\(763\) −6.06670 22.9389i −0.219629 0.830444i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.4396 + 18.0819i −0.376951 + 0.652898i
\(768\) 0 0
\(769\) 8.96676 15.5309i 0.323350 0.560058i −0.657827 0.753169i \(-0.728524\pi\)
0.981177 + 0.193111i \(0.0618577\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.4807 30.2775i −0.628737 1.08901i −0.987805 0.155694i \(-0.950239\pi\)
0.359068 0.933311i \(-0.383095\pi\)
\(774\) 0 0
\(775\) 15.7032 27.1988i 0.564077 0.977009i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.963028 + 1.66801i 0.0345041 + 0.0597628i
\(780\) 0 0
\(781\) 6.26259 10.8471i 0.224093 0.388141i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 46.5870 + 80.6910i 1.66276 + 2.87998i
\(786\) 0 0
\(787\) 28.3564 1.01079 0.505397 0.862887i \(-0.331346\pi\)
0.505397 + 0.862887i \(0.331346\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 29.9601 29.7662i 1.06526 1.05836i
\(792\) 0 0
\(793\) 6.37494 11.0417i 0.226381 0.392103i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.51922 16.4878i 0.337188 0.584027i −0.646715 0.762732i \(-0.723857\pi\)
0.983903 + 0.178705i \(0.0571908\pi\)
\(798\)