Properties

Label 3024.2.q.i.2881.3
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.991381711347.1
Defining polynomial: \(x^{10} - 2 x^{9} + 9 x^{8} - 8 x^{7} + 40 x^{6} - 36 x^{5} + 90 x^{4} - 3 x^{3} + 36 x^{2} - 9 x + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.3
Root \(-1.02682 + 1.77851i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.i.2305.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0731228 + 0.126652i) q^{5} +(2.33035 - 1.25278i) q^{7} +O(q^{10})\) \(q+(-0.0731228 + 0.126652i) q^{5} +(2.33035 - 1.25278i) q^{7} +(-0.832020 - 1.44110i) q^{11} +(0.0999454 + 0.173111i) q^{13} +(-3.13555 + 5.43093i) q^{17} +(-3.45879 - 5.99080i) q^{19} +(3.09092 - 5.35363i) q^{23} +(2.48931 + 4.31160i) q^{25} +(2.46757 - 4.27396i) q^{29} +2.51780 q^{31} +(-0.0117348 + 0.386752i) q^{35} +(-3.50023 - 6.06257i) q^{37} +(-1.15895 - 2.00736i) q^{41} +(0.940993 - 1.62985i) q^{43} -1.81177 q^{47} +(3.86110 - 5.83883i) q^{49} +(2.67307 - 4.62989i) q^{53} +0.243359 q^{55} -4.57099 q^{59} -0.678276 q^{61} -0.0292332 q^{65} +6.18684 q^{67} +1.27749 q^{71} +(-0.778603 + 1.34858i) q^{73} +(-3.74428 - 2.31594i) q^{77} -12.7957 q^{79} +(3.75687 - 6.50709i) q^{83} +(-0.458561 - 0.794251i) q^{85} +(-4.53394 - 7.85301i) q^{89} +(0.449777 + 0.278199i) q^{91} +1.01167 q^{95} +(-3.98514 + 6.90246i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - 4q^{5} + 4q^{7} + O(q^{10}) \) \( 10q - 4q^{5} + 4q^{7} + 4q^{11} - 8q^{13} - 12q^{17} - q^{19} + 3q^{23} - q^{25} - 7q^{29} - 6q^{31} + 5q^{35} - 5q^{41} + 7q^{43} - 54q^{47} - 8q^{49} + 21q^{53} - 4q^{55} - 60q^{59} + 28q^{61} - 22q^{65} - 4q^{67} - 6q^{71} + 15q^{73} - 11q^{77} - 8q^{79} + 9q^{83} - 6q^{85} - 28q^{89} + 4q^{91} + 28q^{95} - 12q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.0731228 + 0.126652i −0.0327015 + 0.0566407i −0.881913 0.471412i \(-0.843744\pi\)
0.849211 + 0.528053i \(0.177078\pi\)
\(6\) 0 0
\(7\) 2.33035 1.25278i 0.880791 0.473505i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.832020 1.44110i −0.250864 0.434508i 0.712900 0.701265i \(-0.247381\pi\)
−0.963764 + 0.266757i \(0.914048\pi\)
\(12\) 0 0
\(13\) 0.0999454 + 0.173111i 0.0277199 + 0.0480122i 0.879553 0.475802i \(-0.157842\pi\)
−0.851833 + 0.523814i \(0.824509\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.13555 + 5.43093i −0.760483 + 1.31720i 0.182119 + 0.983277i \(0.441704\pi\)
−0.942602 + 0.333919i \(0.891629\pi\)
\(18\) 0 0
\(19\) −3.45879 5.99080i −0.793500 1.37438i −0.923787 0.382907i \(-0.874923\pi\)
0.130287 0.991476i \(-0.458410\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.09092 5.35363i 0.644501 1.11631i −0.339916 0.940456i \(-0.610399\pi\)
0.984417 0.175852i \(-0.0562682\pi\)
\(24\) 0 0
\(25\) 2.48931 + 4.31160i 0.497861 + 0.862321i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.46757 4.27396i 0.458217 0.793655i −0.540650 0.841248i \(-0.681822\pi\)
0.998867 + 0.0475930i \(0.0151551\pi\)
\(30\) 0 0
\(31\) 2.51780 0.452209 0.226105 0.974103i \(-0.427401\pi\)
0.226105 + 0.974103i \(0.427401\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.0117348 + 0.386752i −0.00198354 + 0.0653730i
\(36\) 0 0
\(37\) −3.50023 6.06257i −0.575434 0.996681i −0.995994 0.0894162i \(-0.971500\pi\)
0.420560 0.907264i \(-0.361833\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.15895 2.00736i −0.180998 0.313498i 0.761223 0.648491i \(-0.224599\pi\)
−0.942221 + 0.334993i \(0.891266\pi\)
\(42\) 0 0
\(43\) 0.940993 1.62985i 0.143500 0.248550i −0.785312 0.619100i \(-0.787498\pi\)
0.928812 + 0.370550i \(0.120831\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.81177 −0.264275 −0.132137 0.991231i \(-0.542184\pi\)
−0.132137 + 0.991231i \(0.542184\pi\)
\(48\) 0 0
\(49\) 3.86110 5.83883i 0.551586 0.834118i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.67307 4.62989i 0.367174 0.635964i −0.621948 0.783058i \(-0.713659\pi\)
0.989123 + 0.147094i \(0.0469920\pi\)
\(54\) 0 0
\(55\) 0.243359 0.0328145
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.57099 −0.595092 −0.297546 0.954708i \(-0.596168\pi\)
−0.297546 + 0.954708i \(0.596168\pi\)
\(60\) 0 0
\(61\) −0.678276 −0.0868443 −0.0434221 0.999057i \(-0.513826\pi\)
−0.0434221 + 0.999057i \(0.513826\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.0292332 −0.00362593
\(66\) 0 0
\(67\) 6.18684 0.755842 0.377921 0.925838i \(-0.376639\pi\)
0.377921 + 0.925838i \(0.376639\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.27749 0.151611 0.0758053 0.997123i \(-0.475847\pi\)
0.0758053 + 0.997123i \(0.475847\pi\)
\(72\) 0 0
\(73\) −0.778603 + 1.34858i −0.0911286 + 0.157839i −0.907986 0.419000i \(-0.862381\pi\)
0.816858 + 0.576839i \(0.195714\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.74428 2.31594i −0.426700 0.263926i
\(78\) 0 0
\(79\) −12.7957 −1.43963 −0.719817 0.694164i \(-0.755774\pi\)
−0.719817 + 0.694164i \(0.755774\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.75687 6.50709i 0.412370 0.714246i −0.582778 0.812631i \(-0.698034\pi\)
0.995148 + 0.0983854i \(0.0313678\pi\)
\(84\) 0 0
\(85\) −0.458561 0.794251i −0.0497379 0.0861486i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.53394 7.85301i −0.480597 0.832418i 0.519155 0.854680i \(-0.326247\pi\)
−0.999752 + 0.0222619i \(0.992913\pi\)
\(90\) 0 0
\(91\) 0.449777 + 0.278199i 0.0471494 + 0.0291632i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.01167 0.103795
\(96\) 0 0
\(97\) −3.98514 + 6.90246i −0.404630 + 0.700839i −0.994278 0.106821i \(-0.965933\pi\)
0.589649 + 0.807660i \(0.299266\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.42150 + 12.8544i 0.738467 + 1.27906i 0.953186 + 0.302386i \(0.0977832\pi\)
−0.214719 + 0.976676i \(0.568883\pi\)
\(102\) 0 0
\(103\) −0.101974 + 0.176624i −0.0100478 + 0.0174033i −0.871006 0.491273i \(-0.836532\pi\)
0.860958 + 0.508676i \(0.169865\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.48444 + 6.03524i 0.336854 + 0.583448i 0.983839 0.179054i \(-0.0573038\pi\)
−0.646985 + 0.762503i \(0.723970\pi\)
\(108\) 0 0
\(109\) 3.33058 5.76874i 0.319012 0.552545i −0.661270 0.750148i \(-0.729982\pi\)
0.980282 + 0.197603i \(0.0633157\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.0193234 + 0.0334691i 0.00181779 + 0.00314851i 0.866933 0.498425i \(-0.166088\pi\)
−0.865115 + 0.501573i \(0.832755\pi\)
\(114\) 0 0
\(115\) 0.452033 + 0.782945i 0.0421523 + 0.0730100i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.503195 + 16.5841i −0.0461278 + 1.52027i
\(120\) 0 0
\(121\) 4.11548 7.12823i 0.374135 0.648021i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.45933 −0.130526
\(126\) 0 0
\(127\) −13.4788 −1.19605 −0.598027 0.801476i \(-0.704048\pi\)
−0.598027 + 0.801476i \(0.704048\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.91665 17.1761i 0.866422 1.50069i 0.000793988 1.00000i \(-0.499747\pi\)
0.865628 0.500687i \(-0.166919\pi\)
\(132\) 0 0
\(133\) −15.5653 9.62759i −1.34969 0.834818i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.22255 5.58162i −0.275321 0.476870i 0.694895 0.719111i \(-0.255451\pi\)
−0.970216 + 0.242241i \(0.922117\pi\)
\(138\) 0 0
\(139\) −6.26527 10.8518i −0.531413 0.920435i −0.999328 0.0366611i \(-0.988328\pi\)
0.467914 0.883774i \(-0.345006\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.166313 0.288063i 0.0139078 0.0240890i
\(144\) 0 0
\(145\) 0.360872 + 0.625048i 0.0299688 + 0.0519074i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.88364 15.3869i 0.727776 1.26054i −0.230045 0.973180i \(-0.573887\pi\)
0.957821 0.287365i \(-0.0927792\pi\)
\(150\) 0 0
\(151\) 4.23300 + 7.33177i 0.344476 + 0.596651i 0.985259 0.171072i \(-0.0547231\pi\)
−0.640782 + 0.767723i \(0.721390\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.184108 + 0.318885i −0.0147879 + 0.0256135i
\(156\) 0 0
\(157\) 5.69935 0.454858 0.227429 0.973795i \(-0.426968\pi\)
0.227429 + 0.973795i \(0.426968\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.496032 16.3481i 0.0390928 1.28841i
\(162\) 0 0
\(163\) 1.06267 + 1.84060i 0.0832349 + 0.144167i 0.904638 0.426181i \(-0.140141\pi\)
−0.821403 + 0.570349i \(0.806808\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.78723 10.0238i −0.447829 0.775663i 0.550415 0.834891i \(-0.314470\pi\)
−0.998244 + 0.0592278i \(0.981136\pi\)
\(168\) 0 0
\(169\) 6.48002 11.2237i 0.498463 0.863364i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.9109 1.20968 0.604842 0.796345i \(-0.293236\pi\)
0.604842 + 0.796345i \(0.293236\pi\)
\(174\) 0 0
\(175\) 11.2024 + 6.92902i 0.846825 + 0.523785i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.87665 6.71456i 0.289755 0.501870i −0.683996 0.729485i \(-0.739760\pi\)
0.973751 + 0.227615i \(0.0730929\pi\)
\(180\) 0 0
\(181\) −12.1618 −0.903982 −0.451991 0.892022i \(-0.649286\pi\)
−0.451991 + 0.892022i \(0.649286\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.02379 0.0752703
\(186\) 0 0
\(187\) 10.4354 0.763110
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.96765 −0.359447 −0.179723 0.983717i \(-0.557520\pi\)
−0.179723 + 0.983717i \(0.557520\pi\)
\(192\) 0 0
\(193\) −14.9044 −1.07284 −0.536422 0.843950i \(-0.680224\pi\)
−0.536422 + 0.843950i \(0.680224\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.2608 1.51477 0.757386 0.652968i \(-0.226476\pi\)
0.757386 + 0.652968i \(0.226476\pi\)
\(198\) 0 0
\(199\) 9.97208 17.2722i 0.706902 1.22439i −0.259098 0.965851i \(-0.583425\pi\)
0.966001 0.258540i \(-0.0832413\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.395997 13.0512i 0.0277935 0.916012i
\(204\) 0 0
\(205\) 0.338983 0.0236756
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.75556 + 9.96893i −0.398121 + 0.689565i
\(210\) 0 0
\(211\) −11.7569 20.3636i −0.809381 1.40189i −0.913293 0.407303i \(-0.866469\pi\)
0.103912 0.994587i \(-0.466864\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.137616 + 0.238358i 0.00938535 + 0.0162559i
\(216\) 0 0
\(217\) 5.86735 3.15424i 0.398302 0.214123i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.25354 −0.0843220
\(222\) 0 0
\(223\) −2.03052 + 3.51696i −0.135974 + 0.235513i −0.925969 0.377600i \(-0.876750\pi\)
0.789995 + 0.613113i \(0.210083\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.92643 + 3.33667i 0.127861 + 0.221462i 0.922848 0.385165i \(-0.125855\pi\)
−0.794986 + 0.606627i \(0.792522\pi\)
\(228\) 0 0
\(229\) −6.55812 + 11.3590i −0.433373 + 0.750624i −0.997161 0.0752952i \(-0.976010\pi\)
0.563788 + 0.825919i \(0.309343\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.75115 + 15.1574i 0.573307 + 0.992997i 0.996223 + 0.0868284i \(0.0276732\pi\)
−0.422916 + 0.906169i \(0.638993\pi\)
\(234\) 0 0
\(235\) 0.132482 0.229466i 0.00864218 0.0149687i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.65857 + 6.33683i 0.236653 + 0.409895i 0.959752 0.280849i \(-0.0906161\pi\)
−0.723099 + 0.690745i \(0.757283\pi\)
\(240\) 0 0
\(241\) −3.11553 5.39626i −0.200689 0.347604i 0.748062 0.663629i \(-0.230985\pi\)
−0.948751 + 0.316026i \(0.897651\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.457167 + 0.915969i 0.0292074 + 0.0585191i
\(246\) 0 0
\(247\) 0.691380 1.19751i 0.0439915 0.0761954i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.65283 0.356803 0.178402 0.983958i \(-0.442907\pi\)
0.178402 + 0.983958i \(0.442907\pi\)
\(252\) 0 0
\(253\) −10.2868 −0.646727
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.90082 10.2205i 0.368083 0.637539i −0.621183 0.783666i \(-0.713347\pi\)
0.989266 + 0.146127i \(0.0466808\pi\)
\(258\) 0 0
\(259\) −15.7518 9.74293i −0.978770 0.605396i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.1200 + 19.2605i 0.685691 + 1.18765i 0.973219 + 0.229879i \(0.0738331\pi\)
−0.287528 + 0.957772i \(0.592834\pi\)
\(264\) 0 0
\(265\) 0.390925 + 0.677101i 0.0240143 + 0.0415940i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.19442 2.06880i 0.0728251 0.126137i −0.827313 0.561741i \(-0.810132\pi\)
0.900138 + 0.435604i \(0.143465\pi\)
\(270\) 0 0
\(271\) 11.6129 + 20.1142i 0.705435 + 1.22185i 0.966534 + 0.256537i \(0.0825815\pi\)
−0.261100 + 0.965312i \(0.584085\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.14231 7.17469i 0.249790 0.432650i
\(276\) 0 0
\(277\) 2.30900 + 3.99931i 0.138734 + 0.240295i 0.927018 0.375017i \(-0.122363\pi\)
−0.788283 + 0.615312i \(0.789030\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.90841 + 10.2337i −0.352466 + 0.610489i −0.986681 0.162668i \(-0.947990\pi\)
0.634215 + 0.773157i \(0.281324\pi\)
\(282\) 0 0
\(283\) −15.8497 −0.942165 −0.471082 0.882089i \(-0.656137\pi\)
−0.471082 + 0.882089i \(0.656137\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.21555 3.22596i −0.307864 0.190422i
\(288\) 0 0
\(289\) −11.1634 19.3355i −0.656669 1.13738i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.04804 12.2076i −0.411751 0.713173i 0.583330 0.812235i \(-0.301749\pi\)
−0.995081 + 0.0990615i \(0.968416\pi\)
\(294\) 0 0
\(295\) 0.334243 0.578927i 0.0194604 0.0337064i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.23569 0.0714619
\(300\) 0 0
\(301\) 0.151011 4.97698i 0.00870413 0.286868i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.0495974 0.0859053i 0.00283994 0.00491892i
\(306\) 0 0
\(307\) −27.3916 −1.56332 −0.781660 0.623704i \(-0.785627\pi\)
−0.781660 + 0.623704i \(0.785627\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.0557 −0.797026 −0.398513 0.917163i \(-0.630474\pi\)
−0.398513 + 0.917163i \(0.630474\pi\)
\(312\) 0 0
\(313\) 21.7446 1.22908 0.614540 0.788886i \(-0.289342\pi\)
0.614540 + 0.788886i \(0.289342\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.56297 −0.480944 −0.240472 0.970656i \(-0.577302\pi\)
−0.240472 + 0.970656i \(0.577302\pi\)
\(318\) 0 0
\(319\) −8.21228 −0.459799
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 43.3808 2.41377
\(324\) 0 0
\(325\) −0.497589 + 0.861850i −0.0276013 + 0.0478068i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.22208 + 2.26975i −0.232771 + 0.125135i
\(330\) 0 0
\(331\) −10.8472 −0.596216 −0.298108 0.954532i \(-0.596356\pi\)
−0.298108 + 0.954532i \(0.596356\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.452399 + 0.783578i −0.0247172 + 0.0428114i
\(336\) 0 0
\(337\) 1.67411 + 2.89964i 0.0911945 + 0.157954i 0.908014 0.418940i \(-0.137598\pi\)
−0.816819 + 0.576893i \(0.804265\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.09486 3.62840i −0.113443 0.196489i
\(342\) 0 0
\(343\) 1.68298 18.4436i 0.0908723 0.995863i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.5330 −0.619126 −0.309563 0.950879i \(-0.600183\pi\)
−0.309563 + 0.950879i \(0.600183\pi\)
\(348\) 0 0
\(349\) −4.44917 + 7.70619i −0.238159 + 0.412503i −0.960186 0.279362i \(-0.909877\pi\)
0.722027 + 0.691865i \(0.243211\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.32349 2.29236i −0.0704424 0.122010i 0.828653 0.559763i \(-0.189108\pi\)
−0.899095 + 0.437753i \(0.855774\pi\)
\(354\) 0 0
\(355\) −0.0934139 + 0.161798i −0.00495790 + 0.00858733i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.9835 22.4882i −0.685245 1.18688i −0.973360 0.229284i \(-0.926362\pi\)
0.288114 0.957596i \(-0.406972\pi\)
\(360\) 0 0
\(361\) −14.4264 + 24.9873i −0.759286 + 1.31512i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.113867 0.197224i −0.00596009 0.0103232i
\(366\) 0 0
\(367\) 8.79371 + 15.2312i 0.459028 + 0.795060i 0.998910 0.0466808i \(-0.0148644\pi\)
−0.539882 + 0.841741i \(0.681531\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.428975 14.1380i 0.0222713 0.734011i
\(372\) 0 0
\(373\) −0.407538 + 0.705876i −0.0211015 + 0.0365489i −0.876383 0.481614i \(-0.840051\pi\)
0.855282 + 0.518163i \(0.173384\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.986490 0.0508068
\(378\) 0 0
\(379\) 20.4312 1.04948 0.524741 0.851262i \(-0.324162\pi\)
0.524741 + 0.851262i \(0.324162\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.94638 + 15.4956i −0.457139 + 0.791788i −0.998808 0.0488039i \(-0.984459\pi\)
0.541670 + 0.840591i \(0.317792\pi\)
\(384\) 0 0
\(385\) 0.567112 0.304874i 0.0289027 0.0155378i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.81392 + 13.5341i 0.396181 + 0.686206i 0.993251 0.115983i \(-0.0370018\pi\)
−0.597070 + 0.802189i \(0.703669\pi\)
\(390\) 0 0
\(391\) 19.3835 + 33.5731i 0.980264 + 1.69787i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.935661 1.62061i 0.0470782 0.0815419i
\(396\) 0 0
\(397\) 9.63064 + 16.6808i 0.483348 + 0.837183i 0.999817 0.0191225i \(-0.00608724\pi\)
−0.516469 + 0.856306i \(0.672754\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.15064 12.3853i 0.357086 0.618491i −0.630387 0.776281i \(-0.717104\pi\)
0.987473 + 0.157790i \(0.0504370\pi\)
\(402\) 0 0
\(403\) 0.251642 + 0.435857i 0.0125352 + 0.0217116i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.82452 + 10.0884i −0.288711 + 0.500062i
\(408\) 0 0
\(409\) 31.8610 1.57542 0.787712 0.616044i \(-0.211266\pi\)
0.787712 + 0.616044i \(0.211266\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.6520 + 5.72643i −0.524151 + 0.281779i
\(414\) 0 0
\(415\) 0.549426 + 0.951633i 0.0269702 + 0.0467138i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.9480 + 20.6945i 0.583697 + 1.01099i 0.995036 + 0.0995110i \(0.0317278\pi\)
−0.411339 + 0.911482i \(0.634939\pi\)
\(420\) 0 0
\(421\) −1.22251 + 2.11744i −0.0595813 + 0.103198i −0.894278 0.447513i \(-0.852310\pi\)
0.834696 + 0.550711i \(0.185643\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −31.2214 −1.51446
\(426\) 0 0
\(427\) −1.58062 + 0.849728i −0.0764917 + 0.0411212i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.46382 4.26746i 0.118678 0.205556i −0.800566 0.599244i \(-0.795468\pi\)
0.919244 + 0.393688i \(0.128801\pi\)
\(432\) 0 0
\(433\) 30.8539 1.48274 0.741371 0.671095i \(-0.234176\pi\)
0.741371 + 0.671095i \(0.234176\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −42.7633 −2.04565
\(438\) 0 0
\(439\) −2.44822 −0.116847 −0.0584235 0.998292i \(-0.518607\pi\)
−0.0584235 + 0.998292i \(0.518607\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −26.2950 −1.24931 −0.624657 0.780899i \(-0.714761\pi\)
−0.624657 + 0.780899i \(0.714761\pi\)
\(444\) 0 0
\(445\) 1.32614 0.0628650
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.7077 1.82673 0.913365 0.407141i \(-0.133474\pi\)
0.913365 + 0.407141i \(0.133474\pi\)
\(450\) 0 0
\(451\) −1.92854 + 3.34034i −0.0908116 + 0.157290i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.0681236 + 0.0366226i −0.00319368 + 0.00171690i
\(456\) 0 0
\(457\) −9.15511 −0.428258 −0.214129 0.976805i \(-0.568691\pi\)
−0.214129 + 0.976805i \(0.568691\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −14.6152 + 25.3143i −0.680698 + 1.17900i 0.294070 + 0.955784i \(0.404990\pi\)
−0.974768 + 0.223220i \(0.928343\pi\)
\(462\) 0 0
\(463\) 8.21031 + 14.2207i 0.381565 + 0.660891i 0.991286 0.131726i \(-0.0420518\pi\)
−0.609721 + 0.792616i \(0.708718\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.68632 + 13.3131i 0.355680 + 0.616057i 0.987234 0.159276i \(-0.0509158\pi\)
−0.631554 + 0.775332i \(0.717582\pi\)
\(468\) 0 0
\(469\) 14.4175 7.75073i 0.665739 0.357895i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.13170 −0.143996
\(474\) 0 0
\(475\) 17.2200 29.8259i 0.790106 1.36850i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 18.9646 + 32.8476i 0.866513 + 1.50084i 0.865537 + 0.500844i \(0.166977\pi\)
0.000975329 1.00000i \(0.499690\pi\)
\(480\) 0 0
\(481\) 0.699663 1.21185i 0.0319019 0.0552557i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.582809 1.00946i −0.0264640 0.0458370i
\(486\) 0 0
\(487\) −2.30247 + 3.98800i −0.104335 + 0.180714i −0.913466 0.406914i \(-0.866605\pi\)
0.809131 + 0.587628i \(0.199938\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.1876 26.3056i −0.685405 1.18716i −0.973309 0.229497i \(-0.926292\pi\)
0.287904 0.957659i \(-0.407042\pi\)
\(492\) 0 0
\(493\) 15.4744 + 26.8024i 0.696932 + 1.20712i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.97701 1.60041i 0.133537 0.0717884i
\(498\) 0 0
\(499\) 4.63436 8.02694i 0.207462 0.359335i −0.743452 0.668789i \(-0.766813\pi\)
0.950914 + 0.309454i \(0.100146\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.4230 −0.999791 −0.499896 0.866086i \(-0.666628\pi\)
−0.499896 + 0.866086i \(0.666628\pi\)
\(504\) 0 0
\(505\) −2.17072 −0.0965960
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.8207 + 32.5984i −0.834213 + 1.44490i 0.0604572 + 0.998171i \(0.480744\pi\)
−0.894670 + 0.446728i \(0.852589\pi\)
\(510\) 0 0
\(511\) −0.124951 + 4.11808i −0.00552748 + 0.182173i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.0149133 0.0258306i −0.000657158 0.00113823i
\(516\) 0 0
\(517\) 1.50743 + 2.61095i 0.0662969 + 0.114830i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.4641 + 30.2488i −0.765117 + 1.32522i 0.175067 + 0.984556i \(0.443986\pi\)
−0.940185 + 0.340666i \(0.889348\pi\)
\(522\) 0 0
\(523\) 11.8735 + 20.5656i 0.519194 + 0.899270i 0.999751 + 0.0223069i \(0.00710109\pi\)
−0.480557 + 0.876963i \(0.659566\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.89468 + 13.6740i −0.343898 + 0.595648i
\(528\) 0 0
\(529\) −7.60755 13.1767i −0.330763 0.572898i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.231664 0.401254i 0.0100345 0.0173802i
\(534\) 0 0
\(535\) −1.01917 −0.0440626
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.6269 0.706212i −0.500804 0.0304187i
\(540\) 0 0
\(541\) 8.58542 + 14.8704i 0.369116 + 0.639328i 0.989428 0.145028i \(-0.0463271\pi\)
−0.620311 + 0.784356i \(0.712994\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.487083 + 0.843653i 0.0208643 + 0.0361381i
\(546\) 0 0
\(547\) 10.0046 17.3284i 0.427765 0.740910i −0.568910 0.822400i \(-0.692635\pi\)
0.996674 + 0.0814901i \(0.0259679\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −34.1392 −1.45438
\(552\) 0 0
\(553\) −29.8186 + 16.0302i −1.26802 + 0.681674i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.122740 0.212593i 0.00520068 0.00900784i −0.863413 0.504497i \(-0.831678\pi\)
0.868614 + 0.495489i \(0.165011\pi\)
\(558\) 0 0
\(559\) 0.376192 0.0159112
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −44.2509 −1.86495 −0.932477 0.361230i \(-0.882357\pi\)
−0.932477 + 0.361230i \(0.882357\pi\)
\(564\) 0 0
\(565\) −0.00565192 −0.000237778
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.53533 0.232053 0.116027 0.993246i \(-0.462984\pi\)
0.116027 + 0.993246i \(0.462984\pi\)
\(570\) 0 0
\(571\) 4.10381 0.171739 0.0858696 0.996306i \(-0.472633\pi\)
0.0858696 + 0.996306i \(0.472633\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 30.7770 1.28349
\(576\) 0 0
\(577\) −2.82275 + 4.88915i −0.117513 + 0.203538i −0.918781 0.394767i \(-0.870825\pi\)
0.801269 + 0.598305i \(0.204159\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.602904 19.8703i 0.0250127 0.824360i
\(582\) 0 0
\(583\) −8.89619 −0.368442
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.36644 16.2232i 0.386595 0.669601i −0.605394 0.795926i \(-0.706985\pi\)
0.991989 + 0.126324i \(0.0403180\pi\)
\(588\) 0 0
\(589\) −8.70852 15.0836i −0.358828 0.621509i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.43516 + 16.3422i 0.387456 + 0.671093i 0.992107 0.125398i \(-0.0400207\pi\)
−0.604651 + 0.796491i \(0.706687\pi\)
\(594\) 0 0
\(595\) −2.06363 1.27641i −0.0846005 0.0523277i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.67451 0.109278 0.0546388 0.998506i \(-0.482599\pi\)
0.0546388 + 0.998506i \(0.482599\pi\)
\(600\) 0 0
\(601\) −6.60716 + 11.4439i −0.269511 + 0.466808i −0.968736 0.248095i \(-0.920196\pi\)
0.699224 + 0.714902i \(0.253529\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.601872 + 1.04247i 0.0244696 + 0.0423825i
\(606\) 0 0
\(607\) 12.9026 22.3480i 0.523701 0.907076i −0.475919 0.879489i \(-0.657884\pi\)
0.999619 0.0275869i \(-0.00878231\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.181079 0.313637i −0.00732565 0.0126884i
\(612\) 0 0
\(613\) 13.4766 23.3422i 0.544316 0.942784i −0.454333 0.890832i \(-0.650122\pi\)
0.998650 0.0519519i \(-0.0165443\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.76588 + 8.25474i 0.191867 + 0.332323i 0.945869 0.324549i \(-0.105212\pi\)
−0.754002 + 0.656872i \(0.771879\pi\)
\(618\) 0 0
\(619\) 17.3536 + 30.0573i 0.697499 + 1.20810i 0.969331 + 0.245759i \(0.0790371\pi\)
−0.271832 + 0.962345i \(0.587630\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −20.4038 12.6203i −0.817459 0.505621i
\(624\) 0 0
\(625\) −12.3398 + 21.3732i −0.493593 + 0.854928i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 43.9006 1.75043
\(630\) 0 0
\(631\) 36.7963 1.46484 0.732419 0.680854i \(-0.238391\pi\)
0.732419 + 0.680854i \(0.238391\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.985611 1.70713i 0.0391128 0.0677453i
\(636\) 0 0
\(637\) 1.39666 + 0.0848329i 0.0553378 + 0.00336120i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22.0922 38.2648i −0.872590 1.51137i −0.859308 0.511458i \(-0.829106\pi\)
−0.0132813 0.999912i \(-0.504228\pi\)
\(642\) 0 0
\(643\) −7.24065 12.5412i −0.285543 0.494575i 0.687197 0.726471i \(-0.258841\pi\)
−0.972741 + 0.231895i \(0.925507\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.6536 + 28.8448i −0.654719 + 1.13401i 0.327245 + 0.944940i \(0.393880\pi\)
−0.981964 + 0.189068i \(0.939453\pi\)
\(648\) 0 0
\(649\) 3.80315 + 6.58725i 0.149287 + 0.258572i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.53322 + 7.85176i −0.177398 + 0.307263i −0.940989 0.338438i \(-0.890101\pi\)
0.763590 + 0.645701i \(0.223435\pi\)
\(654\) 0 0
\(655\) 1.45027 + 2.51194i 0.0566666 + 0.0981495i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.1806 28.0256i 0.630305 1.09172i −0.357184 0.934034i \(-0.616263\pi\)
0.987489 0.157686i \(-0.0504035\pi\)
\(660\) 0 0
\(661\) −8.65915 −0.336802 −0.168401 0.985719i \(-0.553860\pi\)
−0.168401 + 0.985719i \(0.553860\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.35754 1.26739i 0.0914214 0.0491473i
\(666\) 0 0
\(667\) −15.2541 26.4209i −0.590642 1.02302i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.564339 + 0.977464i 0.0217861 + 0.0377346i
\(672\) 0 0
\(673\) 7.24842 12.5546i 0.279406 0.483946i −0.691831 0.722059i \(-0.743196\pi\)
0.971237 + 0.238114i \(0.0765291\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −38.3315 −1.47320 −0.736600 0.676329i \(-0.763570\pi\)
−0.736600 + 0.676329i \(0.763570\pi\)
\(678\) 0 0
\(679\) −0.639537 + 21.0777i −0.0245432 + 0.808887i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3.31659 + 5.74450i −0.126906 + 0.219807i −0.922476 0.386054i \(-0.873838\pi\)
0.795570 + 0.605861i \(0.207171\pi\)
\(684\) 0 0
\(685\) 0.942567 0.0360136
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.06864 0.0407121
\(690\) 0 0
\(691\) 23.3875 0.889704 0.444852 0.895604i \(-0.353256\pi\)
0.444852 + 0.895604i \(0.353256\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.83254 0.0695121
\(696\) 0 0
\(697\) 14.5358 0.550583
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9.26736 −0.350023 −0.175012 0.984566i \(-0.555996\pi\)
−0.175012 + 0.984566i \(0.555996\pi\)
\(702\) 0 0
\(703\) −24.2131 + 41.9383i −0.913214 + 1.58173i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 33.3984 + 20.6579i 1.25608 + 0.776918i
\(708\) 0 0
\(709\) 14.2355 0.534626 0.267313 0.963610i \(-0.413864\pi\)
0.267313 + 0.963610i \(0.413864\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.78230 13.4793i 0.291449 0.504805i
\(714\) 0 0
\(715\) 0.0243226 + 0.0421280i 0.000909613 + 0.00157550i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.92848 + 12.0005i 0.258389 + 0.447542i 0.965810 0.259249i \(-0.0834752\pi\)
−0.707422 + 0.706792i \(0.750142\pi\)
\(720\) 0 0
\(721\) −0.0163649 + 0.539348i −0.000609459 + 0.0200864i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.5702 0.912513
\(726\) 0 0
\(727\) −15.7000 + 27.1932i −0.582280 + 1.00854i 0.412928 + 0.910764i \(0.364506\pi\)
−0.995208 + 0.0977755i \(0.968827\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.90107 + 10.2209i 0.218259 + 0.378035i
\(732\) 0 0
\(733\) 13.3003 23.0368i 0.491257 0.850883i −0.508692 0.860949i \(-0.669871\pi\)
0.999949 + 0.0100658i \(0.00320409\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.14757 8.91586i −0.189613 0.328420i
\(738\) 0 0
\(739\) −16.5019 + 28.5822i −0.607034 + 1.05141i 0.384693 + 0.923045i \(0.374307\pi\)
−0.991727 + 0.128368i \(0.959026\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.3008 + 33.4299i 0.708076 + 1.22642i 0.965570 + 0.260144i \(0.0837701\pi\)
−0.257493 + 0.966280i \(0.582897\pi\)
\(744\) 0 0
\(745\) 1.29919 + 2.25027i 0.0475988 + 0.0824435i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.6808 + 9.69900i 0.572964 + 0.354394i
\(750\) 0 0
\(751\) −18.9498 + 32.8220i −0.691487 + 1.19769i 0.279863 + 0.960040i \(0.409711\pi\)
−0.971351 + 0.237651i \(0.923622\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.23811 −0.0450596
\(756\) 0 0
\(757\) 22.5927 0.821147 0.410573 0.911828i \(-0.365329\pi\)
0.410573 + 0.911828i \(0.365329\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.8735 24.0296i 0.502913 0.871072i −0.497081 0.867704i \(-0.665595\pi\)
0.999994 0.00336738i \(-0.00107187\pi\)
\(762\) 0 0
\(763\) 0.534493 17.6157i 0.0193500 0.637730i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.456849 0.791286i −0.0164959 0.0285717i
\(768\) 0 0
\(769\) −6.07668 10.5251i −0.219131 0.379546i 0.735412 0.677621i \(-0.236989\pi\)
−0.954542 + 0.298075i \(0.903655\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 20.7795 35.9912i 0.747388 1.29451i −0.201682 0.979451i \(-0.564641\pi\)
0.949071 0.315063i \(-0.102026\pi\)
\(774\) 0 0
\(775\) 6.26756 + 10.8557i 0.225137 + 0.389950i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.01714 + 13.8861i −0.287244 + 0.497521i
\(780\) 0 0
\(781\) −1.06290 1.84100i −0.0380336 0.0658761i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.416753 + 0.721837i −0.0148746 + 0.0257635i
\(786\) 0 0
\(787\) 20.8969 0.744893 0.372446 0.928054i \(-0.378519\pi\)
0.372446 + 0.928054i \(0.378519\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.0869596 + 0.0537869i 0.00309193 + 0.00191244i
\(792\) 0 0
\(793\) −0.0677905 0.117417i −0.00240731 0.00416959i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.319383 + 0.553188i 0.0113131 + 0.0195949i 0.871627 0.490171i \(-0.163066\pi\)
−0.860313 + 0.509765i \(0.829732\pi\)
\(798\) 0 0
\(799\) 5.68091 9.83963i 0.200976 0.348101i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.59125 0.0914433