Properties

Label 3.37
Level 3
Weight 37
Dimension 11
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 24
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 37 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{37}(\Gamma_1(3))\).

Total New Old
Modular forms 13 13 0
Cusp forms 11 11 0
Eisenstein series 2 2 0

Trace form

\( 11 q - 164736261 q^{3} - 366480813328 q^{4} + 77238909590832 q^{6} + 15\!\cdots\!98 q^{7} + 21\!\cdots\!99 q^{9} + 97\!\cdots\!40 q^{10} + 12\!\cdots\!04 q^{12} - 26\!\cdots\!42 q^{13} + 73\!\cdots\!80 q^{15}+ \cdots + 29\!\cdots\!20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{37}^{\mathrm{new}}(\Gamma_1(3))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3.37.b \(\chi_{3}(2, \cdot)\) 3.37.b.a 1 1
3.37.b.b 10