Properties

Label 2940.2.x
Level $2940$
Weight $2$
Character orbit 2940.x
Rep. character $\chi_{2940}(97,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $80$
Newform subspaces $3$
Sturm bound $1344$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.x (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(1344\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2940, [\chi])\).

Total New Old
Modular forms 1440 80 1360
Cusp forms 1248 80 1168
Eisenstein series 192 0 192

Trace form

\( 80 q - 16 q^{11} + 8 q^{15} - 24 q^{25} - 8 q^{37} - 56 q^{43} + 16 q^{51} - 32 q^{53} + 16 q^{57} + 40 q^{65} + 64 q^{67} + 48 q^{71} - 80 q^{81} + 88 q^{85} + 16 q^{93} - 56 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2940, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2940.2.x.a 2940.x 35.f $24$ $23.476$ None 2940.2.x.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$
2940.2.x.b 2940.x 35.f $24$ $23.476$ None 2940.2.x.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$
2940.2.x.c 2940.x 35.f $32$ $23.476$ None 420.2.bo.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(2940, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2940, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1470, [\chi])\)\(^{\oplus 2}\)