Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2940, [\chi])\).
|
Total |
New |
Old |
Modular forms
| 1440 |
80 |
1360 |
Cusp forms
| 1248 |
80 |
1168 |
Eisenstein series
| 192 |
0 |
192 |
\( S_{2}^{\mathrm{old}}(2940, [\chi]) \simeq \)
\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 12}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 3}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(980, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(1470, [\chi])\)\(^{\oplus 2}\)