Properties

Label 2940.2.n
Level $2940$
Weight $2$
Character orbit 2940.n
Rep. character $\chi_{2940}(491,\cdot)$
Character field $\Q$
Dimension $328$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.n (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2940, [\chi])\).

Total New Old
Modular forms 704 328 376
Cusp forms 640 328 312
Eisenstein series 64 0 64

Trace form

\( 328 q - 2 q^{4} - 6 q^{6} - 4 q^{9} - 2 q^{10} - 16 q^{12} + 8 q^{13} + 18 q^{16} - 4 q^{18} + 4 q^{22} + 18 q^{24} - 328 q^{25} + 8 q^{30} - 16 q^{33} + 28 q^{34} - 22 q^{36} - 8 q^{37} + 14 q^{40} + 4 q^{45}+ \cdots - 18 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2940, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2940, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2940, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(588, [\chi])\)\(^{\oplus 2}\)